Project description:A comparision of soil microbial functional genes of three types of subtropical broad-leaved forests Microbial functional structure was significantly different among SBFs (P < 0.05). Compared to the DBF and the EBF, the MBF had higher alpha-diversity of functional genes but lower beta-diversity, and showed more complex functional gene networks.
Project description:Castanopsis fissa is an evergreen broad-leaved species of the cone genus Castanopsis in the family Fagaceae, which is widely distributed and is an excellent native species in Guangdong Province of China. This species has a well-developed root system, excellent soil-fixing power, and better soil and water conservation ability and has the characteristics of barren tolerance, strong sprouting power, abundant and easily decomposed dead leaves, etc. Therefore, C. fissa is not only a pioneer species for postdestruction sprouting forests but also a highly potential ecological public welfare forest tree species. Moreover, due to its beautiful shape, wide canopy and various colors, it has become an ideal tree for landscaping and ornamental purposes. However, there is a basic gap in knowledge in the reports on the drought resistance or drought tolerance genes of C. fissa. Based on the above details, in this study, 2-year-old C. fissa seedlings were used as the study material to investigate the physiological response under drought stress by a potted drought experiment, and we also compared and analyzed the differentially expressed proteins (DEPs) under different periods of drought stress by TMT quantitative labeling protein to prepare a preliminary study on the physiological response and proteomic mechanism of C. fissa adaptation to drought stress.
Project description:The experiment at three long-term agricultural experimental stations (namely the N, M and S sites) across northeast to southeast China was setup and operated by the Institute of Soil Science, Chinese Academy of Sciences. This experiment belongs to an integrated project (The Soil Reciprocal Transplant Experiment, SRTE) which serves as a platform for a number of studies evaluating climate and cropping effects on soil microbial diversity and its agro-ecosystem functioning. Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of soil type, soil transplant and landuse changes on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles.
2016-02-04 | GSE77546 | GEO
Project description:Biogeography of soil-inhabiting myxomycetes in subtropical forests of China
Project description:The Lobaria pulmonaria holobiont consists of algal, fungal, cyanobacterial, and integrated diverse bacterial components and thrives in undisturbed, humid forests. We set out to investigate the role of the microbiome of L. pulmonaria in the adaptation of this ecologically sensitive lichen species to diverse climatic conditions. Our central hypothesis posited that microbiome composition and functionality aligns with continental-scale climatic parameters related to temperature and precipitation. In addition, we tested whether short-term weather dynamics, sampling season, and the genotypes of the fungal and algal partners influenced the variation in the lichen microbiome. Insights into compositional and functional changes within the microbiome were obtained using metaproteomics. Comparative examinations between Sub-Atlantic Lowland (SAL) and Alpine (ALP) regions unveiled the distinct impact of climate on microbiome functions.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
2014-07-22 | GSE59620 | GEO
Project description:Environmental metagenomics, Soil fungal and prokaryotic communities in black locust forests and oak forests of Loess Plateau, China