Project description:To gain mechanistic insight into how Setd2 loss promotes activation of AKT signaling, we performed CUT&Tag sequencing in PDAC cells (KPC1199) with Setd2-KO and Setd2-WT). Setd2-WT and -KO murine PDAC cells were cultured and freshly collected as soon as possible. Hyperactive pA-Tn5 Transposase for CUT&Tag kit from Vazyme (TD901), and antibodies against H3K36me3 and H3K27me3 were employed. Trueprep index kit v2 and v3 for illumina were used to establish DNA library.
Project description:We recently introduced CUT&Tag, an epigenomic profiling strategy in which antibodies are bound to chromatin proteins in situ in permeabilized nuclei, and then used to tether the cut-and-paste transposase Tn5. Activation of the transposase simultaneously cleaves DNA and adds DNA sequencing adapters (“tagmentation”) for paired-end DNA sequencing. Here, we introduce a streamlined CUT&Tag protocol that suppresses exposure artifacts to ensure high-fidelity mapping of the antibody-targeted protein and improves signal-to-noise over current chromatin profiling methods. Streamlined CUT&Tag can be performed in a single PCR tube from cells to amplified libraries, providing low-cost high-resolution genome-wide chromatin maps. By simplifying library preparation, CUT&Tag requires less than a day at the bench from live cells to sequencing-ready barcoded libraries. Because of low background levels, barcoded and pooled CUT&Tag libraries can be sequenced for ~$25 per sample, enabling routine genome-wide profiling of chromatin proteins and modifications that requires no special skills or equipment.
Project description:We report the application of cut&tag technology for high-throughput profiling of histone modifications Raji Epstein–Barr viral genome in reponse to bryostatin treatment. Dual- and tri-methylation of lysine 4 on histone H3 protein indicate genes that are actively expressed/regulated. Tri-methylation of lysine 27 on histone H3 protein marks genes that are negatively regulated or suppressed for expression.
Project description:To gain mechanistic insight into how Setd2 loss reprogramming tumor cell metabolism, we performed CUT&Tag sequencing in PDAC cells with Setd2-KO and Setd2-WT sorted from orthotopic PDAC tumor. Setd2-WT and -KO murine PDAC cells were sorted with DAPI-CD45.2-Pdpn-Epcam+ or cultured, and freshly collected as soon as possible. Hyperactive pA-Tn5 Transposase for CUT&Tag kit from Vazyme (TD901), and antibodies against H3K36me3, H3K27Ac and H3K27me3 were employed. Trueprep index kit v2 and v3 for illumina were used to establish DNA library.
Project description:Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and inference of cell type-specific gene expression. In sum, multi-CUT&Tag increases the “per cell” information content of epigenomic maps, facilitating direct analysis of the interplay of different proteins on chromatin.
Project description:To reveal the role of NCOA7 in cellular senescence, we performed the CUT&TAG assay using the H3K27ac antibody to map acetylation in granulosa cells from control and POI patients. We conducted the DNA sequencing of libraries from CUT&TAG assay using the H3K27ac antibody in human primary granulosa cells.
Project description:Many chromatin features play critical roles in regulating gene expression. A complete understanding of gene regulation will require the mapping of specific chromatin features in small samples of cells at high resolution. Here we describe Cleavage Under Targets and Tagmentation (CUT&Tag), an enzyme-tethering strategy that provides efficient high-resolution sequencing libraries for profiling diverse chromatin components. In CUT&Tag, a chromatin protein is bound in situ by a specific antibody, which then tethers a proteinA-Tn5 transposase fusion protein. Activation of the transposase efficiently generates fragment libraries with high resolution and exceptionally low background. All steps from live cells to sequencing-ready libraries can be performed in a single tube on the benchtop or a microwell in a high-throughput pipeline, and the entire procedure can be performed in one day. We demonstrate the utility of CUT&Tag by profiling histone modifications, RNA Polymerase II and transcription factors on low cell numbers and single cells.
Project description:Many chromatin features play critical roles in regulating gene expression. A complete understanding of gene regulation will require the mapping of specific chromatin features in small samples of cells at high resolution. Here we describe Cleavage Under Targets and Tagmentation (CUT&Tag), an enzyme-tethering strategy that provides efficient high-resolution sequencing libraries for profiling diverse chromatin components. In CUT&Tag, a chromatin protein is bound in situ by a specific antibody, which then tethers a proteinA-Tn5 transposase fusion protein. Activation of the transposase efficiently generates fragment libraries with high resolution and exceptionally low background. All steps from live cells to sequencing-ready libraries can be performed in a single tube on the benchtop or a microwell in a high-throughput pipeline, and the entire procedure can be performed in one day. We demonstrate the utility of CUT&Tag by profiling histone modifications, RNA Polymerase II and transcription factors on low cell numbers and single cells.
Project description:Many chromatin features play critical roles in regulating gene expression. A complete understanding of gene regulation will require the mapping of specific chromatin features in small samples of cells at high resolution. Here we describe Cleavage Under Targets and Tagmentation (CUT&Tag), an enzyme-tethering strategy that provides efficient high-resolution sequencing libraries for profiling diverse chromatin components. In CUT&Tag, a chromatin protein is bound in situ by a specific antibody, which then tethers a proteinA-Tn5 transposase fusion protein. Activation of the transposase efficiently generates fragment libraries with high resolution and exceptionally low background. All steps from live cells to sequencing-ready libraries can be performed in a single tube on the benchtop or a microwell in a high-throughput pipeline, and the entire procedure can be performed in one day. We demonstrate the utility of CUT&Tag by profiling histone modifications, RNA Polymerase II and transcription factors on low cell numbers and single cells.
Project description:Many chromatin features play critical roles in regulating gene expression. A complete understanding of gene regulation will require the mapping of specific chromatin features in small samples of cells at high resolution. Here we describe Cleavage Under Targets and Tagmentation (CUT&Tag), an enzyme-tethering strategy that provides efficient high-resolution sequencing libraries for profiling diverse chromatin components. In CUT&Tag, a chromatin protein is bound in situ by a specific antibody, which then tethers a proteinA-Tn5 transposase fusion protein. Activation of the transposase efficiently generates fragment libraries with high resolution and exceptionally low background. All steps from live cells to sequencing-ready libraries can be performed in a single tube on the benchtop or a microwell in a high-throughput pipeline, and the entire procedure can be performed in one day. We demonstrate the utility of CUT&Tag by profiling histone modifications, RNA Polymerase II and transcription factors on low cell numbers and single cells.