Project description:Understanding the conditions that promote the evolution of reproductive isolation, and thus speciation. Here we empirically test some of the key predictions of speciation theory (Coyne 2004; Kohn 2005) by experimentally evolving the initial stages of speciation in yeast. After allowing replicate populations to adapt to two divergent environments, we observed the consistent, de novo evolution of two forms of postzygotic isolation: reduced rate of mitotic reproduction and reduced efficiency of meiotic reproduction. In general, divergent selection resulted in greater reproductive isolation than parallel selection, as predicted by ecological speciation theory. Our experimental system allowed for the first controlled comparison of the relative importance of ecological and genetic mechanisms of isolation, and the novel ability to quantify the effects of antagonistic epistasis. For mitotic reproduction, hybrid inferiority was conditional upon the selective environments and was both ecological and genetic in basis. In contrast, isolation associated with meiotic reproduction was unconditional and was caused solely by genetic mechanisms. Overall, our results show that adaption to divergent environments promotes the evolution of isolation through antagonistic epistasis, providing evidence of a plausible common avenue to speciation and adaptive radiation in nature (Schluter 2000,2001: Funk 2006) Keywords: Speciation, antagonistic epistasis, divergent adaptation
Project description:Ecological speciation is a common mechanism by which new species arise. Despite great efforts, the role of gene expression in ecological divergence and speciation is poorly understood. Here, we conducted a genome-wide gene expression investigation of two Oryza species that are evolutionarily young and distinct in ecology and morphology. Using digital gene expression (DGE) technology and the paired-end RNA sequencing (RNA-Seq) method, we obtained 21,415 expressed genes across three reproduction-related tissues at two critical developmental stages. Of them, ~8% (1717) differed significantly in expression levels between the two species and these differentially expressed genes are randomly distributed across the genome. Moreover, 62% (1064) of the differentially expressed genes exhibited a signature of directional selection in at least one species. Importantly, the genes with differential expression between species evolved more rapidly at the 5’flanking sequences than the genes without differential expression relative to coding sequences, suggesting that cis-regulatory changes are likely adaptive and play an important role in the ecological divergence of the two species. Finally, we showed evidence of significant differentiation between species in phenotype traits and observed that genes with differential expression were overrepresented with functional terms involving phenotypic and ecological differentiation between the two species, including reproduction- and stress-related characteristics. Our findings demonstrate that ecological speciation is associated with widespread and adaptive alterations in genome-wide gene expression and highlight the dominant role of regulatory evolution in ecological divergence and adaptation.
Project description:Deep sequencing of total RNA extracted from the genital discs of males for each of the following strains : Drosophila sechellia, Drosophila mauritiana, hybrid introgression line 3Q1(A) and hybrid introgression line Q1(A)
Project description:Ecological speciation is a common mechanism by which new species arise. Despite great efforts, the role of gene expression in ecological divergence and speciation is poorly understood. Here, we conducted a genome-wide gene expression investigation of two Oryza species that are evolutionarily young and distinct in ecology and morphology. Using digital gene expression (DGE) technology and the paired-end RNA sequencing (RNA-Seq) method, we obtained 21,415 expressed genes across three reproduction-related tissues at two critical developmental stages. Of them, ~8% (1717) differed significantly in expression levels between the two species and these differentially expressed genes are randomly distributed across the genome. Moreover, 62% (1064) of the differentially expressed genes exhibited a signature of directional selection in at least one species. Importantly, the genes with differential expression between species evolved more rapidly at the 5â??flanking sequences than the genes without differential expression relative to coding sequences, suggesting that cis-regulatory changes are likely adaptive and play an important role in the ecological divergence of the two species. Finally, we showed evidence of significant differentiation between species in phenotype traits and observed that genes with differential expression were overrepresented with functional terms involving phenotypic and ecological differentiation between the two species, including reproduction- and stress-related characteristics. Our findings demonstrate that ecological speciation is associated with widespread and adaptive alterations in genome-wide gene expression and highlight the dominant role of regulatory evolution in ecological divergence and adaptation. We selected accessions representing typical Oryza rufipogon and O. nivara, which were sampled exclusively from South and Southeast Asia where the two species overlap. We chose to collect three types of tissues, i.e., flag leaves at the heading stage (2â??7 cm above the primary branch) (L), panicles at the heading stage (H) and panicles at the flowering stage (10â??15 cm above the primary branch) (F). Sample collection was repeated twice in two consecutive years (2009 and 2010) under the same controlled conditions. A total of 36 samples were sequenced by Illuminaâ??s digital gene expression (DGE) system, with each type of tissues collected from six individuals of each species as biological replicates. To access the quality of DGE technology, we also selected six samples representing three tissues from each of two individuals (one individual per species) for paired-end RNA-Seq sequencing.
Project description:This dataset was gene expression from natural sockeye salmon populations used to test the preservation of coexpression networks that were found in lake whitefish. Here is the abstract of the manuscript:BackgroundM-BM- : A functional understanding of processes involved in adaptive divergence is one of the awaiting opportunities afforded by high throughput transcriptomic technologies. Functional analysis of co-expressed genes has succeeded in the biomedical field in identifying key drivers of disease pathways. However, in ecology and evolutionary biology, functional interpretation of transcriptomic data is still limited. ResultsM-BM- : Here we used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify modules of co-expressed genes in muscle and brain tissue of a lake whitefish backcross progeny. Modules were connected to gradients of known adaptive traits involved in the ecological speciation process between benthic and limnetic ecotypes. Key drivers, i.e. hub genes of functional modules related to reproduction, growth, and behavior were identified, and module preservation was assessed in natural populations. Using this approach, we identified modules of co-expressed genes involved in phenotypic divergence and their key drivers, and further characterized the underlying regulatory structure governing these complex traits. ConclusionsM-BM- : Functional analysis of transcriptomic data can significantly contribute to the understanding of the mechanisms underlying ecological speciation. Our findings point to BMP and Calcium signaling as common pathways involved in coordinated evolution of trophic behavior, trophic morphology (gill rakers), and reproduction. Results also point to housekeeping pathways implicating hemoglobins and constitutive stress response (HSP70) governing growth in lake whitefish. Here are 49 female sockeye salmon transcriptomes as measured by the 16k cGRASP microarray.
Project description:Transcriptome sequencing of non-model organisms is valuable resource of the genetic basis of ecological-meaningful traits. The Royal Irises, Iris section Oncocyclus (Iris: Iridaceae, order Asparagales), are a Middle-East group of species in the course of speciation. The species are characterized with extremely large flowers, a huge range of flower colors and a unique pollination system. The Royal Irises, which are a symbol of conservation in the Middle-east, serve as a model for evolutionary processes of speciation and plant ecology. However, there are not sufficient transcriptomic and genomic data for molecular characterization. Thus, it is necessary to generate massive transcript sequences for functional characterization and molecular marker development for the Royal Irises. The Iris transcriptome sequencing provides valuable resource for studying adaptation-associated traits in this non-model plant. Although intensive eco-evolutionary studies, this is the first reported transcriptome for the Royal Irises. The data available from this study will facilitate gene discovery, functional genomic studies and development of molecular markers in irises, and will provide genetic tools for their conservation.
Project description:This dataset was gene expression from natural sockeye salmon populations used to test the preservation of coexpression networks that were found in lake whitefish. Here is the abstract of the manuscript:Background : A functional understanding of processes involved in adaptive divergence is one of the awaiting opportunities afforded by high throughput transcriptomic technologies. Functional analysis of co-expressed genes has succeeded in the biomedical field in identifying key drivers of disease pathways. However, in ecology and evolutionary biology, functional interpretation of transcriptomic data is still limited. Results : Here we used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify modules of co-expressed genes in muscle and brain tissue of a lake whitefish backcross progeny. Modules were connected to gradients of known adaptive traits involved in the ecological speciation process between benthic and limnetic ecotypes. Key drivers, i.e. hub genes of functional modules related to reproduction, growth, and behavior were identified, and module preservation was assessed in natural populations. Using this approach, we identified modules of co-expressed genes involved in phenotypic divergence and their key drivers, and further characterized the underlying regulatory structure governing these complex traits. Conclusions : Functional analysis of transcriptomic data can significantly contribute to the understanding of the mechanisms underlying ecological speciation. Our findings point to BMP and Calcium signaling as common pathways involved in coordinated evolution of trophic behavior, trophic morphology (gill rakers), and reproduction. Results also point to housekeeping pathways implicating hemoglobins and constitutive stress response (HSP70) governing growth in lake whitefish.
Project description:Deep sequencing of total RNA extracted from the genital discs of males for each of the following strains : Drosophila sechellia, Drosophila mauritiana, hybrid introgression line 3Q1(A) and hybrid introgression line Q1(A) Analysis of poly(A)+ RNA for three independent biological replicates of sequencing libraries for each of the following strains: D. sechellia w, D. mauritiana P-insertion Q1, hybrid introgression line 3Q1(A), and hybrid introgression line Q1(A). Male genital discs were obtained as described above, and total RNA was extracted using RNAqueousM-CM-^BM-BM-.-Micro Kit (Ambion). Poly(A)+ transcripts were isolated subsequently using MicroPoly(A)PuristM-CM-"M-BM-^DM-BM-" Kit (Ambion). To facilitate normalization of reads across our samples, at this stage of library construction we spiked-in small amounts of exogenous RNA from ArrayControlM-CM-"M-BM-^DM-BM-" Kit (Ambion) into each sample of poly(A)+ RNA. Paired-end sequencing was carried out by loading the samples onto four lanes (three samples per lane) of a flow cell and run on an Illumina Genome Analyzer IIx sequencer using 72 cycles per end of each paired-end read. Biological replicates of each genotype were loaded onto separate lanes.
Project description:Speciation via interspecific or intergeneric hybridization and polyploidization triggers genomic responses Examination of small RNA of diploid Parent, Tetraploid parent, F1 hybrid and hexaploid amhiploid. Four pools of plants for each sample