Project description:BackgroundAdaptive radiation in Mediterranean plants is poorly understood. The white-flowered Cistus lineage consists of 12 species primarily distributed in Mediterranean habitats and is herein subject to analysis.Methodology/principal findingsWe conducted a "total evidence" analysis combining nuclear (ncpGS, ITS) and plastid (trnL-trnF, trnK-matK, trnS-trnG, rbcL) DNA sequences and using MP and BI to test the hypothesis of radiation as suggested by previous phylogenetic results. One of the five well-supported lineages of the Cistus-Halimium complex, the white-flowered Cistus lineage, comprises the higher number of species (12) and is monophyletic. Molecular dating estimates a Mid Pleistocene (1.04+/-0.25 Ma) diversification of the white-flowered lineage into two groups (C. clusii and C. salviifolius lineages), which display asymmetric characteristics: number of species (2 vs. 10), leaf morphologies (linear vs. linear to ovate), floral characteristics (small, three-sepalled vs. small to large, three- or five-sepalled flowers) and ecological attributes (low-land vs. low-land to mountain environments). A positive phenotype-environment correlation has been detected by historical reconstructions of morphological traits (leaf shape, leaf labdanum content and leaf pubescence). Ecological evidence indicates that modifications of leaf shape and size, coupled with differences in labdanum secretion and pubescence density, appear to be related to success of new species in different Mediterranean habitats.Conclusions/significanceThe observation that radiation in the Cistus salviifolius lineage has been accompanied by the emergence of divergent leaf traits (such as shape, pubescence and labdanum secretion) in different environments suggets that radiation in the group has been adaptive. Here we argued that the diverse ecological conditions of Mediterranean habitats played a key role in directing the evolution of alternative leaf strategies in this plant group. Key innovation of morphological characteristics is supported by our dated phylogeny, in which a Mediterranean climate establishment (2.8 Ma) predated the adaptive radiation of the white-flowered Cistus.
Project description:This investigation focused on the qualitative and quantitative composition of polyphenolic compounds of Mediterranean northern shore Cistus creticus and six further, partly sympatric Cistus species (C. albidus, C. crispus, C. ladanifer, C. monspeliensis, C. parviflorus, C. salviifolius). Aqueous extracts of 1153 individual plants from 13 countries were analyzed via high performance liquid chromatography (HPLC). The extracts of C. creticus were primarily composed of two ellagitannins (punicalagin and punicalagin gallate) and nine flavonol glycosides (myricetin and quercetin glycosides, with m-3-O-rhamnoside as the dominant main compound). Differences in the proportions of punicalagin derivatives and flavonol glycosides allowed the classification into two chemovariants. Plants containing punicalagin derivatives and flavonol glycosides were especially abundant in the western and central Mediterranean areas and in Cyprus. From Albania eastwards, punicalagin and punicalagin gallate were of much lesser importance and the predominant chemovariant there was a nearly pure flavonol type. With its two chemovariants, C. creticus takes a central position between the flavonol-rich, purple-flowered clade (besides C. creticus, here represented by C. albidus and C. crispus) and the more ellagitannin-rich, white- or whitish-pink-flowered clade (here represented by C. ladanifer, C. monspeliensis, C. parviflorus and C. salviifolius). The median antioxidative capacity of C. creticus plant material was, with 166 mg Trolox equivalents/g dry wt, about half of the antioxidative capacity of C. ladanifer (301 mg te/g dry wt), the species with the highest antioxidative potential.
Project description:Cistus (Cistaceae) comprises a number of white- and purple-flowering shrub species widely distributed in the Mediterranean basin. Within genus Cistus, many taxa are subject to various taxonomic uncertainties. Cistus creticus, a prominent member of the purple-flowered clade, is a prime case of the current taxonomic troubles. Floras and databases approve different species names and utilise different or additional/fewer synonyms. Various intraspecific classification systems based on subspecies or varieties are in use. The inconsistent determination of plant material makes it difficult to compare literature regarding the phytochemical diversity and biological activities of plant material and impedes a systematic utilization of the manifold medicinal properties of C. creticus. In the present investigation, we used DNA sequence data from one nuclear region (ITS) and two chloroplast regions (trnL-trnF, rpl32-trnL) to test the intraspecific genetic diversity of C. creticus and its evolutionary relationships to the closely related C. albidus. The combined DNA data confirmed C. creticus as a rather heterogeneous species that integrates two major evolutionary lineages with clearly different genetic characteristics. The 'Eastern Mediterranean clade' seems to represent old and ancestral characteristics. This lineage exhibits a close relationship to the geographically distant C. albidus, expressed by very closely related ribotypes and an interspecifically shared chlorotype. The 'Western Mediterranean clade' is characterized by a distinctive ITS polymorphism (co-occurring paralogous ribotypes) and more distantly related chlorotypes. The formation of the genetically complex 'Western Mediterranean clade' seems to have involved hybridization and recurrent formation or migration movements.
Project description:Skin is constantly exposed to harmful environmental factors, causing photo-oxidative stress in cells and leading to the development of health and aesthetic problems. Multifunctional ingredients of everyday skincare products, possessing antioxidant, UV-protecting, anti-hyperpigmentation, and skin cancer-preventing properties are in high demand. Due to the high content of polyphenolic compounds Cistus × incanus L. and Cistus ladanifer L. are potentially interesting sources of cosmetic ingredients with multiple skin protecting functions. In this study eight extracts from dried C. incanus and C. ladanifer-aerial parts were prepared using 60% (v/v) or 100% (v/v) methanol, on a magnetic stirrer or in Soxhlet apparatus, and compared for their content of phytochemicals and properties important for the skin protection. Extracts from C. incanus prepared in 60% (v/v) methanol contained the highest amount of polyphenolic compounds (331.82-347.27 mg GAE/g DW) and showed the most significant antioxidant activity (IC50 = 3.81-4.05 µg/mL). C. incanus extracts were also effective tyrosinase inhibitors (30-70% inhibition at 100 µg/mL). Statistical correlation analysis revealed that epicatechin, epigallocatechin gallate (EGCG), and myricitrin may be responsible for the antioxidant and tyrosinase inhibitory potential of C. incanus extracts. All analyzed extracts were cytotoxic for human melanoma cells A375 (IC50 = 57.80-199.01 µg/mL), with C. incanus extract prepared in 100% (v/v) methanol using Soxhlet extraction being the most effective. The extracts did not significantly impair the growth of noncancerous human keratinocytes HaCaT. C. incanus and C. ladanifer extracts possess also natural sun protecting activity (SPF 3.42-3.77 at 100 µg/mL), enhancing their anti-hyperpigmentation and anti-melanoma potential.
Project description:In previous studies, secondary metabolites in the leaf exudate of Cistus ladanifer, specifically aglycone flavonoids and diterpenes, were demonstrated to play an ecophysiological role. They protect against ultraviolet radiation, have antiherbivore activity, and are allelopathic agents. Their synthesis in the plant was also found to vary quantitatively and qualitatively in response to various environmental factors. In view of these findings, the present work was designed to clarify whether within a single population there are differences among individuals subject to the same environmental conditions. To this end, we analyzed the leaves of 100 individuals of C. ladanifer. The results showed the existence of intrapopulational variation, since, although all the individuals had the same composition of secondary chemistry, the amounts were different. The individuals of a given population of C. ladanifer differ from each other even when growing under similar conditions. According to the ammount of flavonoids and diterpenes observed in each individual, it was possible to distinguish four different groups of individuals. Most individuals, evenly distributed within the population, had low concentrations of the studied compounds, whilst other individuals synthesized greater amounts and were randomly distributed among the former. Given the functions of flavonoids and diterpenes in this species, the quantified intra-population variation may involve greater plasticity for the species in the face of environmental changes.
Project description:Flow cytometry, using propidium iodide and 4',6-diamidano-2-phenylindole staining, was used to estimate the nuclear DNA content (2C) and the proportion of A-T base pairs in 16 species of the Mediterranean genus Cistus. Genome sizes were shown to be constant within species, since no significant intraspecific variation in 2C DNA content was detected. At the genus level, up to about 1.5-fold differences in absolute DNA amounts were observed, ranging from 3.92 pg in C. crispus to 5.88 pg in C. monspeliensis. The (AT) : (GC) ratio was close to 1, and was similar for all species examined, ranging from 47.87% A-T content in C clusii, to 50.67% in C. populifolius. Pink-flowered species (subgenus Cistus) had lower DNA amounts than white-flowered species (subgenera Leucocistus and Halimioides). However, the distribution of DNA amounts in Cistus appeared to be continuous and did not permit a clear separation of infra-generic ranks in the genus.