Project description:BackgroundMacrotyloma uniflorum Linn (Fabaceae) is a herbaceous plant with annual branches. It is used in kidney stones, inflamed joints, fever, musculoskeletal disorders, sinus wounds and localized abdominal tumors. It is reported as an antioxidant and nutraceutical (forage and food). GC-MS analysis of ethanol extract has led to identification of twenty-eight compounds from M. uniflorum by comparison of their retention indices and mass spectra fragmentation patterns with those stored on the GC-MS computer library.ResultsThe main constituents identified were mome inositol, ethyl alpha-d-glucopyranoside, n- hexadecanoic acid, linoleic acid (9, 12-octadecadienoic acid), its esters and ethyl derivatives, Vitamin E, stigmasterol and 3-beta-stigmast-5-en-3-ol.ConclusionsThe extracts are rich in linoleic acid and its esters, mome inositol and ethyl alpha-d-glucopyranoside; therefore, this plant can be medicinally beneficial as an antioxidant, in diabetes and its related disorders.
Project description:Reduction of seed dormancy mechanisms, allowing for rapid germination after planting, is a recurrent trait in domesticated plants, and can often be linked to changes in seed coat structure, in particular thinning. We report evidence for seed coat thinning between 2,000?BC and 1,200?BC, in southern Indian archaeological horsegram (Macrotyloma uniflorum), which it has been possible to document with high precision and non-destructively, through high resolution x-ray computed tomography using a synchrotron. We find that this trait underwent stepped change, from thick to semi-thin to thin seed coats, and that the rate of change was gradual. This is the first time that the rate of evolution of seed coat thinning in a legume crop has been directly documented from archaeological remains, and it contradicts previous predictions that legume domestication occurred through selection of pre-adapted low dormancy phenotypes from the wild.
Project description:Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) is a drought hardy food and fodder legume of Indo-African continents with diverse germplasm sources demonstrating alternating mechanisms depicting contrasting adaptations to different climatic zones. Tissue specific expression of genes contributes substantially to location specific adaptations. Regulatory networks of such adaptive genes are elucidated for downstream translational research. MicroRNAs are small endogenous regulatory RNAs which alters the gene expression profiles at a particular time and type of tissue. Identification of such small regulatory RNAs in low moisture stress hardy crops can help in cross species transfer and validation confirming stress tolerance ability. This study outlined prediction of conserved miRNAs from transcriptome shotgun assembled sequences and EST sequences of horsegram. We could validate eight out of 15 of the identified miRNAs to demonstrate their role in deficit moisture stress tolerance mechanism of horsegram variety Paiyur1 with their target networks. The putative mumiRs were related to other food legumes indicating the presence of gene regulatory networks. Differential miRNA expression among drought specific tissues indicted the probable energy conservation mechanism. Targets were identified for functional characterization and regulatory network was constructed to find out the probable pathways of post-transcriptional regulation. The functional network revealed mechanism of biotic and abiotic stress tolerance, energy conservation and photoperiod responsiveness.