Project description:Zoonotic pathogens that can be transmitted via food to humans have a high potential for large-scale emergencies, comprising severe effects on public health, critical infrastructures, and the economy. In this context, the development of laboratory methods to rapidly detect zoonotic bacteria in the food supply chain, including high-resolution mass spectrometry are needed. In this work, an optimized sample preparation method for liquid chromatography-mass spectrometry (LC-MS) based proteome profiling was established for Francisella isolates and a cluster analysis, as well as a phylogenetic tree, was calculated to shed light on evolutionary relationships. Furthermore, this method was applied to tissues of infected hare carcasses from Germany. Even though the non-informative data outnumbered by a manifold the information of the zoonotic pathogen in the resulting proteome profiles, the standardized evaluation of MS data within an established automated analysis pipeline identified F. tularensis and thus is in principle an applicable method to monitor food supply chains.
2020-06-30 | PXD013979 | Pride
Project description:Food metagenomes from MASTER EU
| PRJNA1094419 | ENA
Project description:Antibiotic resistant bacteria from food
Project description:Aiming to reduce food spoilage, the present study developed novel highly active food-grade preservatives affecting a wide range of bacteria. For this purpose, storage proteins were extracted from food plants. After enzymatic hydrolysis by the digestive protease chymotrypsin, the peptide profiles were analyzed by ultrahigh-performance micro-liquid chromatography–triple quadrupole time-of-flight tandem mass spectrometry. Virtual screening identified 21 potential antimicrobial peptides in chickpea legumin. Among those, the peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) exhibited antimicrobial activity against 16 different bacteria, including pathogens, spoilage-causing bacteria and two antibiotic-resistant strains. Minimum inhibitory concentrations (MIC) down to 15.6 µM indicated 10–1,000-fold higher activity of the novel antimicrobial peptides compared to conventional food preservatives. Moreover, Leg1 and Leg2 showed bactericidal activity in bacterial suspension and during the storage of raw pork meat.
Project description:Antimicrobials have been shown to select for changes in biofilm formation and multidrug susceptibility in common human pathogens. We investigated whether common food preservatives selected for these changes in the food pathogen Salmonella enterica serovar Typhimurium. Bacteria were exposed to four food preservatives in either planktonic cultures or biofilms grown on stainless steel beads. Cultures were passaged into fresh media supplemented with the food preservative every 72 hours. Following approximately 1000 generations of continuous preservative exposure, populations were sequenced to determine the single nucleotide polymorphisms that were selected for over evolutionary time.