Project description:Wolfram syndrome is a genetic disorder characterized by insulin-dependent diabetes mellitus due to mutations in the WFS1 gene. The Wfs1-deficient mice exhibit selective β-cell loss and impaired insulin secretion. This phenotype is believed to be associated with an augmentation of ER stress, although the underlying mechanisms remain unknown. To investigate the molecular basis of β-cell failure resulting from Wfs1 deficiency, we performed gene expression profiling analysis using data obtained from RNA-seq of Wfs1KO and WT islets.
Project description:Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene. WFS1 encodes an endoplasmic reticulum resident transmembrane protein. The Wfs1-null mice exhibit progressive insulin deficiency and diabetes. The aim of the present study was to describe the insulin secretion and transcriptome of pancreatic islets in WFS1-deficient mice. WFS1-deficient (Wfs1KO) mice had considerably less pancreatic islets than heterozygous (Wfs1HZ) or wild-type (WT) mice. Wfs1KO pancreatic islets secreted less insulin after stimulation with 2 and 10 mM glucose and with tolbutamide solution compared to WT and Wfs1HZ islets, but not after stimulation with 20 mM glucose. Differences in proinsulin amount were not statistically significant although there was a trend that Wfs1KO had an increased level of proinsulin. After stimulation with 2 mM glucose solution the proinsulin/insulin ratio in Wfs1KO was significantly higher than that of WT and Wfs1HZ. RNA-seq from pancreatic islets found melastatin-related transient receptor potential subfamily member 5 protein gene (Trpm5) to be downregulated in WFS1-deficient mice. Functional annotation of RNA sequencing results showed that WFS1 deficiency influenced significantly the pathways related to tissue morphology, endocrine system development and function, molecular transport network. These findings suggest an interactive role of WFS1 and TRPM5 in insulin secretion. 12 samples: three genotypes, 4 individuals in each genotype
Project description:Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene. WFS1 encodes an endoplasmic reticulum resident transmembrane protein. The Wfs1-null mice exhibit progressive insulin deficiency and diabetes. The aim of the present study was to describe the insulin secretion and transcriptome of pancreatic islets in WFS1-deficient mice. WFS1-deficient (Wfs1KO) mice had considerably less pancreatic islets than heterozygous (Wfs1HZ) or wild-type (WT) mice. Wfs1KO pancreatic islets secreted less insulin after stimulation with 2 and 10 mM glucose and with tolbutamide solution compared to WT and Wfs1HZ islets, but not after stimulation with 20 mM glucose. Differences in proinsulin amount were not statistically significant although there was a trend that Wfs1KO had an increased level of proinsulin. After stimulation with 2 mM glucose solution the proinsulin/insulin ratio in Wfs1KO was significantly higher than that of WT and Wfs1HZ. RNA-seq from pancreatic islets found melastatin-related transient receptor potential subfamily member 5 protein gene (Trpm5) to be downregulated in WFS1-deficient mice. Functional annotation of RNA sequencing results showed that WFS1 deficiency influenced significantly the pathways related to tissue morphology, endocrine system development and function, molecular transport network. These findings suggest an interactive role of WFS1 and TRPM5 in insulin secretion.
Project description:In this study, we achieved integrated transcriptomic and proteomic profiles of GK islets in a time-course fashion at different stages of T2D. Subsequent bioinformatics analysis revealed the chronological order of T2D-related molecular events during the deterioration of pancreatic islets. Our large quantitative dataset provide a valuable resource to obtain a comprehensive picture of the mechanisms responsible for islet dysfunction and to identify potential interventions to prevent beta-cell failure in human T2D.
Project description:Pancreatic islets were isolated from Hnf1a (Hepatocyte nuclear factor 1 alpha) knockout and wild-type mice and cultured ex vivo for two days in RPMI medium with 10% FBS before RNA extraction. The transcription profiles were obtained using Affymetrix GeneChip Mouse Genome 430A 2.0 arrays [Mouse430A_2].
Project description:Recent advances in the understanding of the genetics of type 2 diabetes (T2D) susceptibility have focused attention on the regulation of transcriptional activity within the pancreatic beta-cell. MicroRNAs (miRNAs) represent an important component of regulatory control, and have proven roles in the development of human disease and control of glucose homeostasis. We set out to establish the miRNA profile of human pancreatic islets and of enriched beta-cell populations, and to explore their potential involvement in T2D susceptibility. We used Illumina small RNA sequencing to profile the miRNA fraction in three preparations each of primary human islets and of enriched beta-cells generated by fluorescence-activated cell sorting. In total, 366 miRNAs were found to be expressed (i.e. >100 cumulative reads) in islets and 346 in beta-cells; of the total of 384 unique miRNAs, 328 were shared. A comparison of the islet-cell miRNA profile with those of 15 other human tissues identified 40 miRNAs predominantly expressed (i.e. >50% of all reads seen across the tissues) in islets. Several highly-expressed islet miRNAs, such as miR-375, have established roles in the regulation of islet function, but others (e.g. miR-27b-3p, miR-192-5p) have not previously been described in the context of islet biology. As a first step towards exploring the role of islet-expressed miRNAs and their predicted mRNA targets in T2D pathogenesis, we looked at published T2D association signals across these sites. We found evidence that predicted mRNA targets of islet-expressed miRNAs were globally enriched for signals of T2D association (p-values <0.01, q-values <0.1). At six loci with genome-wide evidence for T2D association (AP3S2, KCNK16, NOTCH2, SCL30A8, VPS26A, and WFS1) predicted mRNA target sites for islet-expressed miRNAs overlapped potentially causal variants. In conclusion, we have described the miRNA profile of human islets and beta-cells and provide evidence linking islet miRNAs to T2D pathogenesis. Examination of the miRNA profiles in 3 preparations of isolated pancreatic islets and 3 preparations of FACS-enriched pancreatic beta-cells
Project description:To identify the target genes of glucokinase activator (GKA) in islet, GKA-induced gene expression in mouse pancreatic islets was measured at 24 hours after treatment of 30 microM GKA or vehicle. GKA-induced gene expression in mouse pancreatic islets was measured at 24 hours after treatment of 30 microM GKA or vehicle.