Project description:The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective fashion. Here, we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67X coverage, Sample GSM1551550). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Aedes aegypti and Culex quinquefasciatus, each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that virtually all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, accurate, and can be applied to many species.
Project description:A new high-density oligonucleotide array of the human transcriptome (GG-H array) has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing, as well as detection of coding SNPs and non-coding transcripts. The GG-H array was validated using samples from multiple independent preparations of human liver and muscle, and compared with results obtained from mRNA sequencing analysis. The GG-H array is highly reproducible in estimating gene and exon abundance, and is sensitive in detecting expression changes and alternative splicing. This array has been implemented in a multi-center clinical program and has generated high quality, reproducible data. When current cost, as well as sample and time requirements for sequencing are considered in the context of a required throughput of hundreds of samples per week for a clinical trial, the array provides a high-throughput and cost effective platform for clinical genomic studies. Examination exon/gene expression of liver and muscle in quadraplicates using both the array technology and RNA-Seq
Project description:A new high-density oligonucleotide array of the human transcriptome (GG-H array) has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing, as well as detection of coding SNPs and non-coding transcripts. The GG-H array was validated using samples from multiple independent preparations of human liver and muscle, and compared with results obtained from mRNA sequencing analysis. The GG-H array is highly reproducible in estimating gene and exon abundance, and is sensitive in detecting expression changes and alternative splicing. This array has been implemented in a multi-center clinical program and has generated high quality, reproducible data. When current cost, as well as sample and time requirements for sequencing are considered in the context of a required throughput of hundreds of samples per week for a clinical trial, the array provides a high-throughput and cost effective platform for clinical genomic studies. Examination exon/gene expression of liver and muscle in quadraplicate using both the array technology and RNA-Seq
Project description:Despite the precipitous decline in the cost of genome sequencing over the last few years, library preparation for RNA-seq is still laborious and expensive for high throughput screening for drug discovery. Limited availability of RNA generated by some experimental workflows poses an additional challenge and typically adds to the cost of RNA library preparation. In a search for low cost, automation-compatible RNA library preparation kits that also maintain strand specificity and are amenable to low input RNA quantities, we systematically tested two recent commercial technologies – Swift and Swift Rapid – using the Illumina TruSeq stranded mRNA, the de facto standard workflow for bulk transcriptomics, as our reference. We used the Universal Human Reference RNA (UHRR) (composed of equal quantities of total RNA from 10 human cancer cell lines) to benchmark differential gene expression in these kits, at input quantities ranging between 10 ng to 500 ng. Read quality and alignment metrics revealed high mapping efficiency and uniform read coverage through genes for all samples across all three kits. Normalized read counts between all treatment groups were in high agreement, with pairwise Pearson correlation coefficients >0.97. Compared to the Illumina TruSeq stranded mRNA kit, both Swift RNA library kits are cost effective and offer shorter workflow times enabled by their patented Adaptase technology. Furthermore, the Swift RNA kit allows for a relatively broader (and lower) input range, producing consistent results across diverse samples. The Swift Rapid RNA method is the fastest and most cost effective NGS workflow that is best suited for higher RNA yields, with the exact same RNA input range as the Illumina TruSeq kit. We also found the Swift RNA kit to produce the fewest number of differentially expressed genes and pathways attributable to input mRNA concentration.
Project description:A new high-density oligonucleotide array of the human transcriptome (GG-H array) has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing, as well as detection of coding SNPs and non-coding transcripts. The GG-H array was validated using samples from multiple independent preparations of human liver and muscle, and compared with results obtained from mRNA sequencing analysis. The GG-H array is highly reproducible in estimating gene and exon abundance, and is sensitive in detecting expression changes and alternative splicing. This array has been implemented in a multi-center clinical program and has generated high quality, reproducible data. When current cost, as well as sample and time requirements for sequencing are considered in the context of a required throughput of hundreds of samples per week for a clinical trial, the array provides a high-throughput and cost effective platform for clinical genomic studies.
Project description:A new high-density oligonucleotide array of the human transcriptome (GG-H array) has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing, as well as detection of coding SNPs and non-coding transcripts. The GG-H array was validated using samples from multiple independent preparations of human liver and muscle, and compared with results obtained from mRNA sequencing analysis. The GG-H array is highly reproducible in estimating gene and exon abundance, and is sensitive in detecting expression changes and alternative splicing. This array has been implemented in a multi-center clinical program and has generated high quality, reproducible data. When current cost, as well as sample and time requirements for sequencing are considered in the context of a required throughput of hundreds of samples per week for a clinical trial, the array provides a high-throughput and cost effective platform for clinical genomic studies.
Project description:Feature reduction of microarray data from mycobacteria treated with a variety of various clinical and investigational drugs We are using feature reduction to demonstrate that subsets of biomarker genes representative of the whole genome are sufficient for MOA classification and deconvolution in a medium-throughput microfluidic format ultimately leading to a cost effective and rapid tool for routine antibacterial drug-discovery programs.
Project description:Modern therapeutic approaches, especially for cancer and certain autoimmune disorders, evolved and have started to frequently rely on monoclonal antibodies (mAb) or other recombinantly prepared biomolecules (biopharmaceuticals) instead of on small molecules. The mAb treatment is effective but comes at a high financial cost. That is why there is a high demand to develop and market so-called ‘biosimilars’, which are highly similar to already approved biopharmaceuticals.The major hindrance for biosimilars manufacturers is that they must declare and prove an almost identical structure, biological activity, quality, safety and efficacy that apply to the original innovator molecule. To prove structural identity, it’s necessary to characterize not only primary sequences and post-translational modification of expressed proteins but also proper protein folding, and any chemical modifications introduced by production, purification and long-term storage. To determine higher order structure of antibodies, a broad palette of techniques can be considered. In this project we used recently discovered fast fluor-alkylation of proteins (FFAP) that offers another approach for structural characterization of therapeutic antibodies and identifying epitope-paratope interacting regions.
2024-05-21 | PXD044326 | Pride
Project description:Evaluation of a high-throughput, cost-effective Illumina library preparation kit