Project description:We analysed global gene expression changes in Chlamydomonas reinhardtii (CC5325) WT, uvr8, CrCo (CO), and CrBlz3 (Hy5) in response to 1h UV-B exposure
Project description:Plants use sunlight as a source of energy for photosynthesis but also as an important environmental cue to regulate growth, development and light acclimation. Wavelengths in the UV-B (280-315 nm) and UV-A/blue (315-500 nm) regions of the spectrum are perceived by UV RESISTANCE LOCUS 8 (UVR8) and cryptochromes (CRY1 and CRY2), respectively. Despite recent advances in our understanding of how these photoreceptors promote photomorphogenesis, very little is known about the molecular mechanisms regulated by UVR8 and CRYs in sunlight exposed plants. Here, a factorial experiment was designed to assess the roles of UVR8 and CRYs in regulating transcriptome wide changes, hormone accumulation, and growth competence of Arabidopsis thaliana plants exposed to solar UV-B, UV-A, and blue radiation.
Project description:This experiment tests the effect of physiological dose of UV-B radiation on wild-type and uvr8-1 (UV Resistance Locus 8) and hy5-1 transcription factor mutants of Arabidopsis. Keywords: strain, stress response
Project description:This experiment tests the effect of physiological dose of UV-B radiation on wild-type and uvr8-1 (UV Resistance Locus 8) and hy5-1 transcription factor mutants of Arabidopsis.
Project description:UV radiation (UV) alters secondary metabolism in the skin of Vitis vinifera L. berries, which may affect on the final composition of both, grapes and wines. We compared berry skin transcriptome and phenolic composition between Tempranillo berries grown in the presence or absence of solar UV in a mid-altitude Tempranillo vineyard. By analysing two different ripening degrees, expression of 121 genes was significantly altered. Functional enrichment identified that, principally, secondary metabolism-related transcripts were induced by UV, including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes induction. Concurrently, flavonol accumulation was the most evident impact of UV on the berry skin phenolic composition. Monoterpenoid biosynthetic transcripts were also up-regulated by UV, whereas induction of stilbenoid biosynthetic transcripts and stilbenes accumulation was probably induced by the joint action of UV and other condition under the UV-blocking filter, likely higher temperature. Among regulatory genes, VvMYBF1, VvMYB24 and three bHLH transcription factors were up-regulated by UV. Homologs to Arabidopsis UVR8-dependent UV-B-induced genes were also induced, including VvHY5-1, VvHY5-2 and VvRUP UV-B signalling genes. This suggests that the UV-B-specific signalling pathway is activated in the skin of grapes grown at low-medium altitudes. The biosynthesis and accumulation of UV-absorbing compounds that are appreciated for winemaking were almost specifically triggered, which indicates that viticultural practices increasing solar UV incidence may improve grape features important to wine production.
Project description:af09_lignin - dml6 - Transcriptome analysis of lignin mutants and UV stress effect on secondary wall synthesis - DML6 vs S DML6+UV vs S+UV S vs S+UV DML6 vs DML6+UV Keywords: normal vs disease comparison,treated vs untreated comparison
Project description:UV radiation (UV) alters secondary metabolism in the skin of Vitis vinifera L. berries, which may affect on the final composition of both, grapes and wines. We compared berry skin transcriptome and phenolic composition between Tempranillo berries grown in the presence or absence of solar UV in a mid-altitude Tempranillo vineyard. By analysing two different ripening degrees, expression of 121 genes was significantly altered. Functional enrichment identified that, principally, secondary metabolism-related transcripts were induced by UV, including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes induction. Concurrently, flavonol accumulation was the most evident impact of UV on the berry skin phenolic composition. Monoterpenoid biosynthetic transcripts were also up-regulated by UV, whereas induction of stilbenoid biosynthetic transcripts and stilbenes accumulation was probably induced by the joint action of UV and other condition under the UV-blocking filter, likely higher temperature. Among regulatory genes, VvMYBF1, VvMYB24 and three bHLH transcription factors were up-regulated by UV. Homologs to Arabidopsis UVR8-dependent UV-B-induced genes were also induced, including VvHY5-1, VvHY5-2 and VvRUP UV-B signalling genes. This suggests that the UV-B-specific signalling pathway is activated in the skin of grapes grown at low-medium altitudes. The biosynthesis and accumulation of UV-absorbing compounds that are appreciated for winemaking were almost specifically triggered, which indicates that viticultural practices increasing solar UV incidence may improve grape features important to wine production. A total of 12 samples were hybridized. Grape skin RNA from berries ripening under a UV-transmitting filter (FUV+) and a UV-blocking filter (FUV-) was compared. Berry skin of two different ripening stages was analysed on each UV treatment. All samples were harvested simultaneously and a NaCl series was used to select the ripening degree in a non-invasive way. Three biological replicates were analyzed for each sample.
Project description:The experiment was performed to search for genes regulated by the UV RESISTANT LOCUS (UVR8) under solar ultraviolet radiation (UV).
Project description:UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.