Project description:In the present study we tested the hypothesis that male and female rat livers respond differently to a change in nutrient availability or to insulin treatment. We compared hepatic gene expression, hepatic glycogen and glucose output, insulin sensitivity and amino acids, using healthy rats. Keywords: Hepatic gene expression, sex-differences
Project description:In the present study we tested the hypothesis that male and female rat livers respond differently to a change in nutrient availability or to insulin treatment. We compared hepatic gene expression, hepatic glycogen and glucose output, insulin sensitivity and amino acids, using healthy rats. Keywords: Hepatic gene expression, sex-differences Two-condition experiment. Biological replicates: 4 male rat livers from rats on a standard diet and 4 female rat livers from rats on a standard diet. One replicate per array.
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:In the present study we tested the hypothesis that male and female rat livers respond differently to a change in nutrient availability or to insulin treatment. Healthy normal rats were used to determine the effects of mild starvation or insulin injections on hepatic lipid and carbohydrate turnover as well as gene expression. Keywords: Hepatic glucose output, gluconeogenesis, gene expression, respons to insulin treatment and mild starvation
Project description:In the present study we tested the hypothesis that male and female rat livers respond differently to a change in nutrient availability or to insulin treatment. Healthy normal rats were used to determine the effects of mild starvation or insulin injections on hepatic lipid and carbohydrate turnover as well as gene expression. Keywords: Hepatic glucose output, gluconeogenesis, gene expression, respons to insulin treatment and mild starvation Two-condition experiment. Biological replicates: male rat livers +/- mild starvation (n=8), female rat livers +/- mild starvation (n=8), Treated with saline or insulin (i.p.) for 40 minutes. One replicate per array.
Project description:In the field, adult male rodents are more frequently infected with hantaviruses than females. Early data suggests that sex steroid hormones modulate sex differences in host immune response. This project focuses on elucidating sex differences in gene expression in the lungs of infected males 15 and 40 days post infection with Seoul virus (naturally occurring hantavirus in Norway rats) relative to infected females 15 and 40 days post infection on 12 RG_U34 GeneChips.