Project description:Incomplete antibiotic removal in pharmaceutical wastewater treatment plants (PWWTPs) could lead to the development and spread of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in the environment, posing a growing public health threat. In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. The N1 strain was highly resistant to ampicillin, cefazolin, chloramphenicol, tetracycline, and norfloxacin, while the N2 strain exhibited high resistance to ampicillin, chloramphenicol, and cefazolin. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity. Overall, this research provides insights into the potential risks posed by ARBs in pharmaceutical wastewater and emphasizes the need for further studies on their impact and mitigation strategies.
Project description:Cationic antimicrobial peptides (CAPs) are promising novel alternatives to conventional antibacterial agents, but the overlap in resistance mechanisms between small-molecule antibiotics and CAPs is unknown. Does evolution of antibiotic resistance decrease (cross-resistance) or increase (collateral sensitivity) susceptibility to CAPs? We systematically addressed this issue by studying the susceptibilities of a comprehensive set of antibiotic resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic resistant bacteria frequently showed collateral sensitivity to CAPs, while cross-resistance was relatively rare. We identified clinically relevant multidrug resistance mutations that simultaneously elevate susceptibility to certain CAPs. Transcriptome and chemogenomic analysis revealed that such mutations frequently alter the lipopolysaccharide composition of the outer cell membrane and thereby increase the killing efficiency of membrane-interacting antimicrobial peptides. Furthermore, we identified CAP-antibiotic combinations that rescue the activity of existing antibiotics and slow down the evolution of resistance to antibiotics. Our work provides a proof of principle for the development of peptide based antibiotic adjuvants that enhance antibiotic action and block evolution of resistance.
Project description:The rise of antibiotic resistance and decline of antibiotic discovery urgently calls for novel mechanistic understanding of pharmacological and evolutionary interactions between antibiotics and multidrug resistant bacteria to revitalize existing antibiotics. The evolutionary cross-resistance to antibiotics has received intensive attention previously. Nevertheless, whether and how bacteria develop negative responses, under the selective pressure of antibiotics by inverting the evolutionary trajectory remains unclear. Here we found an instance of collateral sensitivity, in which clinical vancomycin-resistant Enterococcus faecium (VREfm) pathogens exhibit dramatic and specific susceptibility to pleuromutilin antibiotics, decreased minimal inhibitory concentrations (MICs) from 128 µg/mL to 0.03 µg/mL. The unique trade-off between vancomycin and pleuromutilins is mediated by the epistasis between the van gene cluster and msrC encoding an ABC-F protein protecting bacterial ribosomes. We validated the efficacy of pleuromutilins in vivo through reducing colonization and promoting microbiota restoration. Our findings provide an alternative approach to inverting the selective advantage and reversing the route of vancomycin resistance evolution, and to treat VREfm associated infections.
Project description:Pseudomonas aeruginosa is a leading cause of hospital acquired infections for which the development of new antibiotics is urgently needed. Unlike most enteric bacteria, P. aeruginosa lacks thymidine kinase and thymidine phosphorylase activity, and thus cannot scavenge exogenous thymine. An appealing strategy to selectively target P. aeruginosa while leaving the healthy microbiome largely intact would thus be to disrupt thymidine synthesis while providing exogenous thymine. However, this approach was previously intractable because known antibiotics that perturb thymidine synthesis are largely inactive against P. aeruginosa. Here, we characterize a novel dihydrofolate reductase inhibitor, fluorofolin, that exhibits significant activity against P. aeruginosa in culture and in a mouse thigh infection model. Fluorofolin is active against a wide range of clinical P. aeruginosa isolates resistant to known antibiotics, including critical antibiotic development priorities expressing the beta-lactamases KPC-5 and NDM-1. Importantly, in the presence of thymine supplementation, fluorofolin activity is selective for P. aeruginosa. Resistance to fluorofolin can emerge through overexpression of the efflux pumps MexCD-OprJ and MexEF-OprN. However, these mutants also decrease pathogenesis, in part due to increased export of quorum sensing precursors leading to decreased virulence factor production. Our findings thus demonstrate how understanding species-specific genetic differences and discovery of an antibiotic with a widely conserved target can enable selective targeting of important pathogens while revealing new tradeoffs between resistance and pathogenesis.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health. Rather than depend on creating new antibiotics (to which bacteria will eventually become resistant), we are employing antibiotic adjuvants that potentiate existing antibiotics. Based on our previous work, loratadine, the FDA-approvide antihistamine, effectively potentiates cell-wall active antibiotics in multiple strains of MRSA. Furthermore, loratadine and oxacillin helped disrupt preformed biofilms and stop them from initially forming in vitro. To gain biological insight into how this potentiation and biofilm inhibition occurs, we used RNA-seq on treated MRSA 43300 cultures to examine antibiotic adjuvant affects transcritome-wide.
Project description:Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM2.5 and PM10 significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health, as the US mortality rate outweighs those from HIV, tuberculosis, and viral hepatitis combined. In the wake of the COVID-19 pandemic, antibiotic resistant bacterial infections acquired during hospital stays have increased. Instead of designing and deploying new antibiotics which MRSA would quickly develop resistance to, adjuvants are a key strategy to combatting these bacteria. We have evaluated several small molecule adjuvants that have strong potentiation with β-lactam antibiotics and have now investigated at the molecular level how the lead adjuvant exerts its effects. We hypothesized that the expression levels of key resistance genes would decrease once cotreated with a β-lactam antibiotic (oxacillin) and the adjuvant (compound 8). Furthermore, bioinformatic analyses would reveal biochemical pathways enriched in differentially expressed genes. RNA-seq analysis showed 176 and 233 genes significantly up and downregulated, respectively, upon cotreatment with oxacillin and compound 8. We identified four subclusters of genes that were regulated in similar patterns in response to drug treatment. Many of these genes displayed a similar pattern of expression where they were unaffected by compound 8 treatment alone, upregulated upon antibiotic challenge, and downregulated again upon cotreatment. GO categories that were significantly enriched among downregulated genes involved carbohydrate utilization and/or transport. Most of the biochemical pathways enriched with significantly downregulated genes involved carbohydrate utilization, such as the citric acid cycle (p=6.4x10-6) and the phosphotransferase system (p=1.8x10-5). The most populated pathway was S. aureus infection (p=3.0x10-3). Creating a network of affected gene products helped uncover potential master regulators for further investigation. This study revealed a dramatic impact of our lead adjuvant on the transcriptome that is consistent with a pleiotropic effect. These results point to this adjuvant as having potential broad therapeutic use in combatting MRSA infections.
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This series includes gene expression in the ileum of control, antibiotics (ABx)-treated, germfree, germfree-ABx-treated and mice colonized with normal or Abx-resistant microbiota.
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This series includes gene expression in the ileum of control, antibiotics (ABx)-treated, germfree, germfree-ABx-treated and mice colonized with normal or Abx-resistant microbiota. common reference design with a pool of small intestine RNA labeled with Cy3
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series