Project description:Single Gland Whole-exome sequencing: building on our prior description of multi-region WES of colorectal tumors and targeted single gland sequencing (E-MTAB-2247), we performed WES of multiple single glands from different sides (right: A and left: B) of two tumors in this study (tumor O and U) on the illumina platform using the Agilent SureSelect 2.0 or illumina Nextera Rapid Capture Exome kit (SureSelect or NRCE, as indicated in the naming of fastq files). Colorectal Cancer Xenograft Whole-exome sequencing: The HCT116 and LoVo Mismatch-Repair-deficient colorectal adenocarcinoma cell lines were obtained from the ATCC and cultured under standard conditions. For both cell lines, a single âfoundingâ cell was cloned and expanded in vitro to ~6M cells. Two aliquots of ~1M cells were subcutaneously injected into opposite flanks (right and left) of a nude mouse and tumors allowed to reach a size of ~1B cells (1cm3) before the animal was sacrificed. Tumor tissue was collected separately from the right and left lesions and DNA was extracted for WES using the illumina TruSeq Exome kit or Nextera Rapid Capture Exome expanded Kits (Truseq or NRCEe), as was DNA from the first passage population (a polyclonal tissue culture for HCT116 and a polyclonal xenograft sample for LoVo), which were employed as a control to study mutation accumulation in culture and post xenotransplantation.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.