Project description:Identification and expression analysis of microRNAs in infected larvae of the insect model Galleria mellonella with uropathogenic (UPEC) and commensal E. coli strains that are known to cause symptomatic and asymptomatic bacteriuria (ABU) in humans, respectively.
Project description:Transcriptional profiling of Asymptomatic Bacteriuria (ABU) Escherichia coli strain 83972 comparing the progenitor wild type strain ABU83972 with its re-isolates from human bladder colonization (PI-2, PII-4, PIII-4) and in vitro cultivation experiment (4.9).
Project description:Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression. Therapeutic urinary tract inoculation with the prototype ABU strain E. coli 83972 is a safe alternative approach in patients with therapy-resistant recurrent UTI. The strain establishes persistent bacteriuria, protecting patients against super-infection with more virulent strains. Using this protocol, we examined if the establishment of asymptomatic bacterial carriage alters host gene expression.
Project description:Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression. Therapeutic urinary tract inoculation with the prototype ABU strain E. coli 83972 is a safe alternative approach in patients with therapy-resistant recurrent UTI. The strain establishes persistent bacteriuria, protecting patients against super-infection with more virulent strains. Using this protocol, we examined if the establishment of asymptomatic bacterial carriage alters host gene expression. After antibiotic treatment to remove prior infection, patients were inoculated with E. coli 83972 through a catheter. Blood samples were obtained before and 24 h after inoculation.
Project description:Transcriptional profiling of Asymptomatic Bacteriuria (ABU) Escherichia coli strain 83972 comparing the progenitor wild type strain ABU83972 with its re-isolates from human bladder colonization (PI-2, PII-4, PIII-4) and in vitro cultivation experiment (4.9). Wild type vs. re-isolate cells. Biological replicates: 3 wild type, 3 re-isolates, independently grown and harvested. One replicate per array.
Project description:Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression. A498 cell line has been validated as a model of uropathogenic E. coli infection; the cells express functional receptors for bacterial virulence ligands and the response to virulent strains reflects human UTI. The cells were infected with asymptomatic and pathogenic E. coli in vitro, and harvested RNA was subjected to whole genome transcriptome analysis.
Project description:Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation, in which the contrasting effects of pathogens and commensals on host tissues are clearly displayed. While virulent Escherichia coli cause severe, potentially life-threatening disease by breaking the inertia of the mucosal barrier and infecting the kidneys, the most common outcome of bacteriuria is an asymptomatic carrier state resembling commensalism at other mucosal sites. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease associated responses in the host. To address this question, we examined the effects of asymptomatic bacterial carriage on host gene expression. A498 cell line has been validated as a model of uropathogenic E. coli infection; the cells express functional receptors for bacterial virulence ligands and the response to virulent strains reflects human UTI. The cells were infected with asymptomatic and pathogenic E. coli in vitro, and harvested RNA was subjected to whole genome transcriptome analysis. A498 human kidney epithelial cells were infected with the asymptomatic (E. coli 83972) or virulent strains (E. coli CFT073) for 4 hours. The cells with culture medium alone were used as a control. The experiment was performed in biological duplicates or triplicates.