Project description:The epidemic character of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA), especially the geographically widespread clone USA300, is poorly understood. USA300 isolates carry a type IV staphylococcal chromosomal cassette mec (SCCmec) element conferring -lactam antibiotic class resistance and a putative pathogenicity island, ACME (arginine catabolic mobile element). Physical linkage between SCCmec and ACME suggests that selection for antibiotic resistance and for pathogenicity may be interconnected. We constructed isogenic mutants containing deletions of SCCmec and ACME in a USA300 clinical isolate to determine the role of these elements in a rabbit model of bacteremia. We found that deletion of type IV SCCmec did not affect competitive fitness, whereas deletion of ACME significantly attenuated pathogenicity or fitness of USA300. These data are consistent with a model in which ACME enhances growth and survival of USA300, allowing for genetic "hitchhiking" of SCCmec. SCCmec in turn protects against exposure to β -lactams. Keywords: Wild type control vs mutant
Project description:The epidemic character of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA), especially the geographically widespread clone USA300, is poorly understood. USA300 isolates carry a type IV staphylococcal chromosomal cassette mec (SCCmec) element conferring -lactam antibiotic class resistance and a putative pathogenicity island, ACME (arginine catabolic mobile element). Physical linkage between SCCmec and ACME suggests that selection for antibiotic resistance and for pathogenicity may be interconnected. We constructed isogenic mutants containing deletions of SCCmec and ACME in a USA300 clinical isolate to determine the role of these elements in a rabbit model of bacteremia. We found that deletion of type IV SCCmec did not affect competitive fitness, whereas deletion of ACME significantly attenuated pathogenicity or fitness of USA300. These data are consistent with a model in which ACME enhances growth and survival of USA300, allowing for genetic "hitchhiking" of SCCmec. SCCmec in turn protects against exposure to β -lactams. Keywords: Wild type control vs mutant Wild type untreated in triplicate is compared to three mutants in triplicate in both exponential and stationary growth phases, totalling 24 samples
Project description:WHole genome sequencing of a ST779-MRSA isolate identified a novel composite SCC element we have termed a pseudo SCCmec-SCC-SCC(CRISPR) element
Project description:Comparing two subclones (Taiwan clone and Asian-Pacific clone) of CA-MRSA ST59. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes, the staphylococcal chromosomal cassette mec (SCCmec) VT and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and is a frequent colonizer of healthy children.
Project description:Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. SPICE de novo predicted known composite elements, including AP1-IRF composite elements (AICE) and STAT5 tetramers, and also predicted a range of novel binding partners, including JUN-IKZF1 composite elements. We confirmed cooperative binding of JUN and IKZF1 to an upstream conserved noncoding region, CNS9, in the human IL10 gene, that contains a non-canonical IKZF1 site, and the activity of an IL10-luciferase reporter construct depended on both this site and the AP1 binding site within this composite element in primary B and T cells. Our findings reveal an unappreciated global association of IKZF1 and AP1, and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen responsible for high levels of human morbidity and mortality. MRSA co-ordinates expression of an array of bacterial factors involved in antimicrobial resistance, nutrient acquisition and immune evasion in the host. Post-transcriptional regulation by small RNAs (sRNAs) has emerged as an important mechanism for the control of MRSA virulence. However, the function of the majority of sRNAs during infection is unknown. To address this gap in understanding, we performed UV cross-linking, ligation and sequencing of hybrids (CLASH) in MRSA to unravel sRNA-RNA interactions under conditions that mimic the host environment. Using double stranded ribonuclease III (RNase III) as a bait we not only uncovered known interactions but also hundreds of novel sRNA-RNA pairs. Strikingly, our results suggest that the production of small membrane-permeabilizing toxins is under extensive sRNA-mediated regulation and that their expression is intimately connected to metabolism. Importantly, we discovered that two sRNAs, RNAIII and RsaE, control the expression of at least four cytolytic toxins that are important for MRSA virulence. Taken together, we present a comprehensive analysis of sRNA-target interactions in S. aureus and provide detail on how these contribute to the control of virulence in response to changes in metabolism.
Project description:Approximatively 75% of the genome of S. aureus (“core” genome) are highly conserved between strains, whereas the remaining 25% (“accessory” genome) are composed of variable regions that are mostly composed of mobile genetic elements (MGE), containing virulence and resistance genes. We have developed a composite DNA-microarray (StaphVar Array) which selectively targets 403 genes located on the accessory or core variable genome. Target genes encode antimicrobial resistance factors (35 %), virulence factors (28 %) and adhesins (31%). This microarray was validated with reference strains and used to characterize the genomic DNA of 13 community-acquired methicillin resistant S. aureus (CA-MRSA) strains representative of all the Multilocus Sequence Types (STs) described to date in Belgium. Analysis of gene content of 8 reference strains by the StaphVar Array matched 96 to 99% of the theoretical results. Analysis of CA-MRSA strains showed that 54.4 % of the genes tested were strain-dependent. Strains presented specific exotoxin, enterotoxin, cytolysin and adhesin gene profile by multi-locus sequence typing (MLST) lineage. One exception to these “lineage-specific” gene profile was the variable presence of the Arginin Catabolic Mobile Element (ACME, characteristic of the USA300 clone) within ST8 strains. In conclusion, this novel StaphVar array enables characterization of more than 400 variable resistance and virulence determinants in S. aureus strains. CA-MRSA strains from Belgium displayed extensive diversity in virulence and resistance profile. The presence of the USA 300 clone in our country was confirmed. Although mainly located on MGE, association of virulence genes were highly conserved within strains of the same MLST lineage.
Project description:Approximatively 75% of the genome of S. aureus (“core” genome) are highly conserved between strains, whereas the remaining 25% (“accessory” genome) are composed of variable regions that are mostly composed of mobile genetic elements (MGE), containing virulence and resistance genes. We have developed a composite DNA-microarray (StaphVar Array) which selectively targets 403 genes located on the accessory or core variable genome. Target genes encode antimicrobial resistance factors (35 %), virulence factors (28 %) and adhesins (31%). This microarray was validated with reference strains and used to characterize the genomic DNA of 13 community-acquired methicillin resistant S. aureus (CA-MRSA) strains representative of all the Multilocus Sequence Types (STs) described to date in Belgium. Analysis of gene content of 8 reference strains by the StaphVar Array matched 96 to 99% of the theoretical results. Analysis of CA-MRSA strains showed that 54.4 % of the genes tested were strain-dependent. Strains presented specific exotoxin, enterotoxin, cytolysin and adhesin gene profile by multi-locus sequence typing (MLST) lineage. One exception to these “lineage-specific” gene profile was the variable presence of the Arginin Catabolic Mobile Element (ACME, characteristic of the USA300 clone) within ST8 strains. In conclusion, this novel StaphVar array enables characterization of more than 400 variable resistance and virulence determinants in S. aureus strains. CA-MRSA strains from Belgium displayed extensive diversity in virulence and resistance profile. The presence of the USA 300 clone in our country was confirmed. Although mainly located on MGE, association of virulence genes were highly conserved within strains of the same MLST lineage. CGH microarray was performed on 13 epidemiologically distinct clinical isolates of methicillin resistant S. aureus. S. aureus labeled genomic DNA were hybridized to StaphVar arrays containing 1326 60mer oligonucleotide probes (Eurogentec, Belgium).
Project description:Hemolysins are lytic exotoxins expressed in most strains of S. aureus, but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in methicillin-resistant S. aureus (MRSA). To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in two hospital-acquired strains of MRSA, both with staphylococcal cassette chromosome mec (SCCmec) type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in strain 43300 but displayed differential activity in strain USA100. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA but that the directionality and/or magnitude of the difference are likely strain dependent.