Project description:Purpose: Investigate genes associated to resistance of Xanthomonas perforans race T4 in tomato line with different resistance level Methods: Resistant and susceptible tomato breeding lines were subjected to the inoculation with Xanthomonas perforans race T4 followed by sample collection at 48 hpi and RNA-seq analysis for screening differential expressed genes associated with inoculation of pathogen. Results: Revealed gene expression profiles associated disease resistance and susceptiblilty.
Project description:Xanthomonas spp. employ transcription activator-like effectors (TALEs) to promote pathogenicity by activating host susceptibility (S) genes. Cotton GhSWEET10 is an S gene targeted by a TALE in an early isolate of Xanthomonas citri pv. malvacearum (Xcm), but not by recent field Xcm isolates. To understand the pathogenicity shift in Xcm and its adaptation to cotton, we assembled the whole genome and the TALE repertoire of three recent Xcm Texas field isolates. A newly evolved TALE, Tal7b, activated different GhSWEET genes, GhSWEET14a and GhSWEET14b. Simultaneous activation of GhSWEET14a and GhSWEET14b resulted in pronounced water-soaked lesions. Transcriptome profiling coupled with TALE-binding element prediction identified a pectin lyase as an additional Tal7b target, quantitatively contributing to Xcm virulence alongside GhSWEET14a/b. CRISPR-Cas9-based gene editing supported the function of GhSWEETs as S genes in cotton bacterial blight and the promise of disrupting the TALE-binding site in these genes to control the disease. Collectively, our findings elucidate the rapid evolution of TALEs in Xanthomonas field isolates and highlight the virulence mechanism wherein TALEs induce multiple S genes simultaneously to promote pathogenicity.
Project description:Arsenic (As) is highly toxic element to all forms of life and is a major environmental contaminant. Understanding acquisition, detoxification, and adaptation mechanisms in bacteria that are associated with host in arsenic-rich conditions can provide novel insights into dynamics of host-microbe-microenvironment interactions. In the present study, we have investigated an arsenic resistance mechanism acquired during the evolution of a particular lineage in the population of Xanthomonas oryzae pv. oryzae (Xoo), which is a serious plant pathogen infecting rice. Our study revealed the horizontal acquisition of a novel chromosomal 12kb ars cassette in Xoo IXO1088 that confers high resistance to arsenate/arsenite. The ars cassette comprises several genes that constitute an operon induced in the presence of arsenate/arsenite. This cassette has spread in lineage with highly virulent strains owing to a particular lineage’s evolutionary success. Further, we performed the transcriptomic analysis of Xoo strain IXO1088 under arsenate/arsenite exposure using RNA sequencing. The transcriptomic analysis revealed that arsenic detoxification and efflux, oxidative stress response, iron acquisition/storage, and damage repair are the main cellular responses to arsenic exposure. The study provides useful insights into the acquisition, detoxification, and adaptation mechanisms among Xoo populations to adapt under arsenic-rich environmental conditions.
Project description:Transcriptional profiling of DSF regulon under iron starvation in Xanthomonas oryzae pv. oryzicola (Xoc; BXOR1) using wild type, rpfF mutant and rpfF mutant with complementing plasmid pSC9. Cell-cell signalling mediated by quorum sensing molecule known as Diffusible signalling factor (DSF) is required for the virulence of Xanthomonas group of plant pathogens. The transcriptional profiling in this study is to elucidate the role of DSF in iron acquisition under the iron limitting environment which would lead to successful colonization and pathogenesis inside host.
Project description:Due to low numbers and poor accessibility of host cells that are targeted for effector delivery, the actual biological functions of most effectors remain elusive. Here, we developed a novel Isolation Nuclei TArgeted by Bacterial Effectors (INTABE) system, which facilitates selectively recovering nuclei of the cells in Arabidopsis thaliana plants that have received type-III effectors of pathogenic Xanthomonas bacteria. Using these nuclei as studying materials, we analysed changes in host gene expression and their correlation with changes in DNA methylation induced by Xanthomonas effector Outer Protein D (XopD).