ABSTRACT: Combining application of organic amendments and chemical fertilizers alleviates soil microbial limitations, enhancing soil quality and soybean yield.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil microbes that can promote plant growth and/or increase plant resistance to one or multiple stress conditions. These natural resources are environmentally friendly tools for reducing the use of chemical fertilizers and pesticides and for improving the nutritional quality of plants, including pharmacological metabolites. Coriander (Coriandrum sativumL.), commonly known as cilantro or Chinese parsley, is a worldwide culinary and medicinal plant with both nutritional and medicinal properties. Little is known about how PGPR may promote plant growth or affect metabolite profiles in coriander. Here, by usingAeromonassp. H1 that is a PGPR strain, we investigate how coriander yield and quality could be affected by PGPR with transcriptome insights.
Project description:The spread of antibiotic resistance genes (ARG) into agricultural soils, products, and foods severely limits the use of organic fertilizers in agriculture. In this study, experimental land plots were fertilized, sown, and harvested for two consecutive agricultural cycles using either mineral or three types of organic fertilizers: sewage sludge, pig slurry, or composted organic fraction of municipal solid waste. The analysis of the relative abundances of more than 200,000 ASV (Amplicon Sequence Variants) allowed the identification of a small, but significant (<10%) overlap between soil and fertilizer microbiomes, particularly in soils sampled the same day of the harvest (post-harvest soils). Loads of clinically relevant ARG were significantly higher (up to 100 fold) in fertilized soils relative to the initial soil. The highest increases corresponded to post-harvest soils treated with organic fertilizers, and they correlated with the extend of the contribution of fertilizers to the soil microbiome. Edible products (lettuce and radish) showed low, but measurable loads of ARG (sul1 for lettuces and radish, tetM for lettuces). These loads were minimal in mineral fertilized soils, and strongly dependent on the type of fertilizer. We concluded that at least part of the observed increase on ARG loads in soils and foodstuffs were actual contributions from the fertilizer microbiomes. Thus, we propose that adequate waste management and good pharmacological and veterinarian practices may significantly reduce the potential health risk posed by the presence of ARG in agricultural soils and plant products.
2021-07-09 | GSE179685 | GEO
Project description:Rhizobacterial sequences under organic and chemical fertilizers
| PRJNA473047 | ENA
Project description:Soil bacterial community on different soils treated by chemical and organic fertilizers.
Project description:Reforestation is effective in restoring ecosystem functions and enhancing ecosystem services of degraded land. The three most commonly employed reforestation methods of natural reforestation, artificial reforestation with native Masson pine (Pinus massoniana Lamb.), and introduced slash pine (Pinus elliottii Engelm.) plantations were equally successful in biomass yield in southern China. However, it is not known if soil ecosystem functions, such as nitrogen (N) cycling, are also successfully restored. Here, we employed a functional microarray to illustrate soil N cycling. The composition and interactions of N-cycling genes in soils varied significantly with reforestation method. Natural reforestation had more superior organization of N-cycling genes, and higher functional potential (abundance of ammonification, denitrification, assimilatory, and dissimilatory nitrate reduction to ammonium genes) in soils, providing molecular insight into the effects of reforestation.
2019-11-04 | GSE100379 | GEO
Project description:Effects of organic fertilizer application on soil microorganism and rice yield
Project description:Nitrogen availability in the soil is a major determinant of crop yield. While the application of fertilizer can substantially increase the yield on poor soils, it also causes nitrate pollution of water resources and high costs for farmers. Increasing the nitrogen use efficiency in crop plants is a necessary step to implement low input agricultural systems. We exploited the genetic diversity present in the world-wide Arabidopsis thaliana population to study adaptive growth patterns and changes in gene expression associated with chronic low nitrate stress, with the aim to identify biomarkers associated with good plant performance under low nitrate availability. Transcription and epigenetic factors were identified as important players in the adaptatiion to limited nitrogen in a global gene expression analysis using the Affymetrix ATH1 chip.
2019-02-04 | GSE110171 | GEO
Project description:soil microbial for soil amendments
Project description:Microarrays were used to identify transcriptional responses in field-grown root material of wheat in order to dissect specific gene expression responses to limited macronutrient availability, particularly phosphate. This study fills the gap between the transcriptome studies on model plants and the lack of studies on soil-grown wheat aiming to identify candidate genes for enhancing nutrient uptake efficiency. The work at Rothamsted Research is supported via the 20:20 Wheat® Programme by the UK Biotechnology and Biological Sciences Research Council. The contribution was supported by BIONUT-ITN and the research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 264296. T. aestivum cv. Hereward root material was excavated in triplicates in May 2011 at booting stage from sections 0 and 1 plots representing continuous wheat plots of the “Broadbalk” field experiment at Rothamsted Research, UK (http://www.rothamsted.ac.uk/sample-archive/guide-classical-and-other-long-term-experiments-datasets-and-sample-archive). The distinct peculiarity of these plots, including a control plot with nutrient replete wheat plants, is the withdrawal of N, P, K, Mg and S fertilizers exposing the plants to multiple long-term nutrient deficiencies and representing 6 treatments ; 12 samples were analysed.