Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:We characterized the bacterial diversity of chlorinated drinking water from three surface water treatment plants supplying the city of Paris, France. For this purpose, we used serial analysis of V6 ribosomal sequence tag (SARST-V6) to produce concatemers of PCR-amplified ribosomal sequence tags (RSTs) from the V6 hypervariable region of the 16S rRNA gene for sequence analysis. Using SARST-V6, we obtained bacterial profiles for each drinking water sample, demonstrating a strikingly high degree of biodiversity dominated by a large collection of low-abundance phylotypes. In all water samples, between 57.2-77.4% of the sequences obtained indicated bacteria belonging to the Proteobacteria phylum. Full-length 16S rDNA sequences were also generated for each sample, and comparison of the RSTs with these sequences confirmed the accurate assignment for several abundant bacterial phyla identified by SARST-V6 analysis, including members of unclassified bacteria, which account for 6.3-36.5% of all V6 sequences. These results suggest that these bacteria may correspond to a common group adapted to drinking water systems. The V6 primers used were subsequently evaluated with a computer algorithm to assess their hybridization efficiency. Potential errors associated with primer-template mismatches and their impacts on taxonomic group detection were investigated. The biodiversity present in all three drinking water samples suggests that the bacterial load of the drinking water leaving treatment plants may play an important role in determining the downstream community dynamics of water distribution networks.
Project description:We characterized the bacterial diversity of chlorinated drinking water from three surface water treatment plants supplying the city of Paris, France. For this purpose, we used serial analysis of V6 ribosomal sequence tag (SARST-V6) to produce concatemers of PCR-amplified ribosomal sequence tags (RSTs) from the V6 hypervariable region of the 16S rRNA gene for sequence analysis. Using SARST-V6, we obtained bacterial profiles for each drinking water sample, demonstrating a strikingly high degree of biodiversity dominated by a large collection of low-abundance phylotypes. In all water samples, between 57.2-77.4% of the sequences obtained indicated bacteria belonging to the Proteobacteria phylum. Full-length 16S rDNA sequences were also generated for each sample, and comparison of the RSTs with these sequences confirmed the accurate assignment for several abundant bacterial phyla identified by SARST-V6 analysis, including members of unclassified bacteria, which account for 6.3-36.5% of all V6 sequences. These results suggest that these bacteria may correspond to a common group adapted to drinking water systems. The V6 primers used were subsequently evaluated with a computer algorithm to assess their hybridization efficiency. Potential errors associated with primer-template mismatches and their impacts on taxonomic group detection were investigated. The biodiversity present in all three drinking water samples suggests that the bacterial load of the drinking water leaving treatment plants may play an important role in determining the downstream community dynamics of water distribution networks. 3 different drinking water samples (Orly, Ivry, Joinville drinking water sample)