Project description:Patients with primary refractory acute myeloid leukemia (AML) have a dismal long-term prognosis. Elucidating the resistance mechanisms to induction chemotherapy could help identify strategies to improve AML patient outcomes. Herein, we retrospectively analyzed the multi-omics data of more than 1,500 AML cases and found that patients with spliceosome mutations had a higher risk of developing refractory disease. RNA splicing analysis revealed that the mis-spliced genes in refractory patients converged on translation-associated pathways, promoted mainly by U2AF1 mutations. Integrative analyses of binding and splicing in AML cell lines substantiated that the splicing perturbations of mRNA translation genes originated from both the loss and gain of mutant U2AF1 binding. In particular, the U2AF1-S34F and U2AF1-Q157R mutants orchestrated the inclusion of exon 11 (encoding a premature termination codon) in the eukaryotic translation initiation factor 4A2 (EIF4A2). This aberrant inclusion led to reduced eIF4A2 protein expression via nonsense-mediated mRNA decay. Consequently, U2AF1 mutations caused a net decrease in global mRNA translation that induced the integrated stress response (ISR) in AML cells, which was confirmed by single-cell RNA-seq. The induction of ISR enhanced the ability of AML cells to respond and adapt to stress, contributing to chemoresistance. A pharmacologic inhibitor of ISR, ISRIB, sensitized U2AF1 mutant cells to chemotherapy. These findings highlight a resistance mechanism by which U2AF1 mutations drive chemoresistance and provide a therapeutic approach for AML through targeting the ISR pathway.
Project description:Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 altered its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways implicated in myeloid disease such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in vivo, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1’s zinc finger domains. mRNA profiles of K562 cells expressing U2AF1 WT, mutants and knockdown of U2AF1 generated by deep sequencing.
Project description:Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 altered its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways implicated in myeloid disease such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in vivo, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1’s zinc finger domains.
Project description:Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA binding motifs; yet how they affect splicing and promote cancer remains unclear. The U2AF1/U2AF2 heterodimer is critical for 3’ splice site (3’SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure detecting contacts between U2AF1 and the 3’SS AG at single-nucleotide resolution (fractionated eCLIP-seq or freCLIP-seq). Our data reveal that U2AF1 S34F and Q157R mutants establish new 3’SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding (eCLIP-seq and freCLIP-seq), splicing (RNA-seq) and turnover (TimeLapse-seq or TL-seq) data, we predicted that U2AF1 mutations directly affect stress granule components. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. Keywords: splicing, RNA binding, U2AF1, U2AF2, S34F, Q157R, hotspot mutations, 3'SS, 3' splice site, myeloid malignancies, eCLIP, freCLIP, RNA-seq, RNA turnover, TimeLapse-seq, TL-seq, RNA granules, stress granules, stress response, biomolecular condensates, MDS, AML
Project description:Studies of AML patient samples have shown that specific combinations of AML disease alleles confer an adverse outcome, however, in vivo models do not exist for the majority of common, poor-prognosis genotypes. Here we show that TET2/FLT3 mutations can cooperate to induce AML in vivo using a genetically engineered mouse model, and that this model has a defined stem-cell population with a characteristic transcriptional and epigenetic profile. TET2 and FLT3 mutations cooperate to induce site-specific changes in DNA methylation and gene expression, including at loci that regulate hematopoietic differentiation. We demonstrate that re-expression of genes that are silenced in TET2/FLT3-mutant AML restores normal differentiation, demonstrating that the epigenetic program of TET2/FLT3-mutant AML cells can be reversed in vitro and in vivo. Using ERRBS, we profiled genome-wide DNA methylation patterns of the hematopoietic stem cells (LSK) population in Wide-type, Flt3-IDT, Tet2-/-, and Tet2-/-Flt3-IDT mice, each in triplicates
Project description:We have generated mice that carry Cre-dependent "knock-in" alleles (MGS34F and IES34F) of U2af1(S34F), a mutation commonly encountered in human myelodysplastic syndromes and acute myeloid leukemia (AML). MEFs were generated from the progenies of these mice with those carrying a UBC-CreERT2 transgene, and were treated with 4-Hydroxytamoxifen (4OHT) to induce Cre-mediated recombination and subsequent U2af1(S34F) expression. Mice carrying the MGS34F allele were further crossed with those carrying a floxed Runx1 allele and Mx1-Cre. U2af1(S34F) expression and Runx1 deletion caused changes in gene expression and RNA splicing. Mice with a conditional "knock-in" U2af1(S34F) allele and conditional "knockout" alleles of Runx1 were mutagenized with low-dose N-Ethyl-N-Nitrosourea (ENU). Within 1.5 year, one of fourteen ENU-treated mice with U2af1(S34F) and Runx1 deletion developed AML, as did recipients of allografted splenic cells from two other such mice, but AML did not arise from cells with other genotypes or mice without ENU treatment.
Project description:U2AF1 S34F is one of the most recurrent splicing factor mutations in lung adenocarcinoma (ADC) and has been shown to cause transcriptome-wide pre-mRNA splicing alterations. While U2AF1 S34F-associated splicing alterations have been described, the fate of affected mRNA isoforms remains largely unexplored. To better understand the impact U2AF1 S34F has on isoform fate and function, we conducted high-throughput long-read cDNA sequencing from isogenic human bronchial epithelial cells with and without U2AF1 S34F mutation. We find that nearly 75% (49,366) of our long-read constructed multi-exon isoforms do not overlap GENCODE or short-read assembled isoforms, a large proportion of which (12,397) are due to novel junction connectivity rather than novel splice site usage. We find 198 transcript isoforms with significant expression and usage changes relative to wild-type, some of which were not assembled by short-reads. We find an enrichment of isoforms from immune related genes are down regulated in the presence of U2Af1 S34F, none of which are observed to have splicing changes detected from long-read data. Finally, we reveal that isoforms likely targeted by nonsense-mediated decay are largely downregulated in U2AF1 S34F cells, suggesting that the impact of observed isoform changes may alter the translational output of affected genes. Altogether, our data builds on previous work by providing a higher resolution transcriptome snapshot of full-length isoform alterations associated with U2AF1 S34F in HBEC3kt cells.
Project description:Somatic mutations in the spliceosome gene U2AF1 are common in patients with myelodysplastic syndromes. U2AF1 mutations that code for the most common amino acid substitutions are always heterozygous, and the retained wild-type allele is expressed, suggesting that mutant hematopoietic cells may require the residual wild-type allele to be viable and cause disease. We show that hematopoiesis and RNA splicing in U2af1 heterozygous knock-out mice was similar to control mice, but that deletion of the wild-type allele in U2AF1 (S34F) heterozygous mutant expressing hematopoietic cells (i.e., hemizygous mutant) was lethal. These results confirm that U2AF1 mutant hematopoietic cells are dependent on the expression of wild-type U2AF1 for survival in vivo and that U2AF1 is a haplo-essential cancer gene. Mutant U2AF1 (S34F) expressing cells were also more sensitive to reduced, but not absent, expression of wild-type U2AF1 than non-mutant cells. Furthermore, mice transplanted with leukemia cells expressing mutant U2AF1 had significantly reduced tumor burden and improved survival after the wild-type U2af1 allele was deleted compared to when it was not deleted. These results suggest that selectively targeting the wild-type U2AF1 allele in heterozygous mutant cells could induce cancer cell death and be a therapeutic strategy for patients harboring U2AF1 mutations.
Project description:Studies of AML patient samples have shown that specific combinations of AML disease alleles confer an adverse outcome, however, in vivo models do not exist for the majority of common, poor-prognosis genotypes. Here we show that TET2/FLT3 mutations can cooperate to induce AML in vivo using a genetically engineered mouse model, and that this model has a defined stem-cell population with a characteristic transcriptional and epigenetic profile. TET2 and FLT3 mutations cooperate to induce site-specific changes in DNA methylation and gene expression, including at loci that regulate hematopoietic differentiation. We demonstrate that re-expression of genes that are silenced in TET2/FLT3-mutant AML restores normal differentiation, demonstrating that the epigenetic program of TET2/FLT3-mutant AML cells can be reversed in vitro and in vivo.