Project description:This SuperSeries is composed of the following subset Series:; GSE10496: Expression analysis of the effect of protoplasting and FACS sorting in roots exposed to iron deficiency (-Fe); GSE10497: Expression analysis of root developmental zones after iron deficiency (-Fe) treatment; GSE10501: Expression analysis of root cell-types after iron deficiency (-Fe) treatment; GSE10502: Time course expression analysis of the iron deficiency (-Fe) response in Arabidopsis roots Experiment Overall Design: Refer to individual Series
Project description:We performed small RNA-seq (sRNA-seq) study of Arabidopsis shoots under iron-sufficient (+Fe), iron deficient (-Fe) and iron resupply (Fe resupply) conditions to investigate and identify sRNAs whose expression is regulated by iron deficiency.
Project description:Iron (Fe) and copper (Cu) are essential metal micronutrients that are necessary for many redox reactions. The uptake of these metals is tightly regulated in plants. Some redox processes can alternatively use Fe-containing proteins or Cu-containing proteins, depending on nutritional status. Copper deficiency can rescue a Cucumis melo Fe uptake deficient mutant, and Fe deficiency can result in increased accumulation of Cu. However, the system responsible for Fe-deficiency-regulated Cu-uptake is unknown. To understand the genes and gene networks associated with Fe-deficiency regulated Cu uptake and Fe-Cu cross-talk, we conducted transcriptomic profiling of roots and rosettes of spl7 (a Cu uptake deficient mutant in arabidopsis) and Col-0 (WT) grown under Fe, Cu and simultaneous Fe and Cu deficiency conditions.
Project description:Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes including respiration, photosynthesis and oxidative stress protection. In many eukaryotic organisms, including yeast and mammals, copper and iron homeostases are highly interconnected; however such interdependence is not well established in higher plants. Here we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis thaliana. COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We have characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 expression could play a dual role under Fe deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation maybe aimed to minimize further iron consume. On the other hand, global expression analyses of copt2-1 mutants versus wild type Arabidopsis plants indicate that low phosphate responses are increased in copt2-1 plants. In this sense, COPT2 function under Fe deficiency counteracts low phosphate responses. These results open up new biotechnological approaches to fight iron deficiency in crops. Four biological replicates of Arabidopsis seedlings were generated for 2 genotypes, Col-0 and copt2-1 mutant; and 3 growth condictions; first one an iron(Fe) and copper(Cu) sufficient medium (+Fe + Cu), second one an Fe deficient and Cu sufficient medium (-Fe+Cu) and third one an Fe and Cu deficient medium (-Fe-Cu). For each growth one comparasion was made, copt2-1 mutant versus Col-0; in each comparasion four biological replicates were made, two replicas were labeled with Cy5 for the mutant sample and Cy3 for the Col-0 sample, while the other two replicas were reversed-labeled.
Project description:a novel orphan peptide, IRON-REGULATED PROTEIN1 (IRP1) that is rapidly induced by Fe deficiency and improves growth on Fe-deplete media. In Arabidopsis, ectopic expression of IRP1 affected the activity of several genes involved in Fe acquisition and homeostasis, causing a dramatic increase of Fe in leaves and enhanced seed Fe loading. Heterologous expression of IRP1 in tomato plants resulted in increased Fe levels in fruits. Integration of AtIRP1 into the genome of crop plants may represent a novel strategy for Fe biofortification. wild type Col-0 and transgenic overexpressor IRP1-OE plants were grown under normal conditions or subjected to and iron-starvation for 3 days. Roots and shoots were collected with 3 biological replicates.
Project description:CsUBC13 was identified via proteomics from iron starvation treated Cucumber root. ubc13A is an ABRC seed stock (CS51269). CS851269 was purchased from ABRC and confirmed as homozygous Atubc13A knock-out T-DNA mutant. We generated transgenic arabidopsis with ectopic expression of CsUBC13 gene under control of the cauliflower 35S promotor. Both genotypes and Col-0 were used to investigate the transcriptional response to Iron (Fe) deficiency. Wild type Col-0, ubc13A and transgenic overexpressor OE were grown under normal and iron-deficiency conditions. Roots were collected with 3 biological replicates.
Project description:Fe deficiency stimulates a coordinated response involving reduction, transport and redistribution of Fe in the roots. The expression of genes regulated by Fe deficiency in the two contrasting Arabidopsis thaliana ecotypes, Tsu-1 and Kas-1, shows that different ecotypes can respond in diverse ways, with different Fe regulated overrepresented categories. We use microarrays to analyze the Fe deficiency responses of contrasting Arabidopsis thaliana ecotypes (Tsu-1 and Kas-1).
Project description:We performed small RNA-seq (sRNA-seq) study of Arabidopsis phloem sap under iron-sufficient (+Fe; control) and iron deficient (-Fe) conditions to investigate and identify sRNAs whose expression is regulated by iron deficiency in the phloem sap.
Project description:RNAseq transcriptome of leaves and roots of Arabidopsis thaliana Columbia-0 grown under control (ES media) and Fe-deficiency (-Fe +100 µM FRZ) conditions.
Project description:Fe deficiency stimulates a coordinated response involving reduction, transport and redistribution of Fe in the roots. The expression of genes regulated by Fe deficiency in the two contrasting Arabidopsis thaliana ecotypes, Tsu-1 and Kas-1, shows that different ecotypes can respond in diverse ways, with different Fe regulated overrepresented categories. We use microarrays to analyze the Fe deficiency responses of contrasting Arabidopsis thaliana ecotypes (Tsu-1 and Kas-1). Arabidopsis thaliana roots from the Kas-1 and Tsu-1 ecotypes were exposed to complete or -Fe nutrient solutions and collected after 24 and 48 h for RNA extraction and hybridization on Affymetrix microarrays. Experiments were done using three biological replicates.