Project description:To identify more targets in soybean, particularly specific targets of Cd-stress-responsive miRNAs, high-throughput degradome sequencing was used. In total, we obtained 8913111 raw reads from the library which was constructed from a mixture of four samples (HX3-CK, HX3-Cd-treatment, ZH24-CK and ZH24-Cd-treatment). After removing the reads without the CAGAG adaptor, 5430126 unique raw-reads were obtained. The unique sequences were aligned to the G. max genome database, and 6516276 reads were mapped to the genome. The mapped reads from the libraries represented 51481 annotated G. max genes.
Project description:Manganese (Mn) stress is known to be a major limitation for development of soybean, and legume crop productivity globally. However, very little information is available on the adaptive mechanisms, particularly in the important legume crop soybean (Glycine Max L.), which enable leaves to respond to high-Mn availability. Thus, to elucidate these mechanisms in soybean leaves at molecular level, we used an RNA sequencing approach to investigate transcriptomes of the leaves under Mn-sufficient and Pi-excessive conditions. Our investigation revealed that more genes showed altered expression patterns in old leaf than in young leaf under Mn excess, suggesting that the Mn excess-more-sensitive old leaf required expression change in a larger number of genes to cope with high-Mn stress than the Mn excess-less-sensitive young leaf. The functional classification of differentially expressed genes (DEGs) was examined to gain an understanding of how leaves respond to Mn stress, caused by soil Mn excess. As a result, more DEGs involved in nodulation, detoxification, nutrient/ion transport, transcriptional factors, key metabolic pathways, Mn remobilization and signalling were found in Mn-excessive induced old leaves than in Mn-excessive induced young leaves. Our findings have enabled the identification of molecular processes that play important roles in the acclimation of leaves to Mn excess, ultimately leading to the development of Mn-efficient soybean suitable for Mn-excessive soils.
Project description:Transcriptome analysis of cold-treated leaves (unifoliates) of soybean seedlings were performed. RNAseq analysis was performed using two lanes on a Illumina HiSeq2000 and sequenced on a 100bp, paired-end run.
Project description:To identify more targets in soybean, particularly specific targets of Cd-stress-responsive miRNAs, high-throughput degradome sequencing was used. In total, we obtained 8913111 raw reads from the library which was constructed from a mixture of four samples (HX3-CK, HX3-Cd-treatment, ZH24-CK and ZH24-Cd-treatment). After removing the reads without the CAGAG adaptor, 5430126 unique raw-reads were obtained. The unique sequences were aligned to the G. max genome database, and 6516276 reads were mapped to the genome. The mapped reads from the libraries represented 51481 annotated G. max genes. Identification of miRNA targerts in soybean roots
Project description:Low phosphate (LP) availability is a critical limiting factor affecting soybean production. Soybean plants develop a series of strategies to adapt phosphate limitation condition. To know the underlying molecular mechanisms responsible for LP stress response. A label-free quantification (LFQ) analysis of soybean leaves grown under low and high phosphate condition was performed.