Project description:Cellular uptake and cytotoxicity data from neural cells treated with microplastics were compared and contrasted. Transcriptomic data obtained by RNA-seq from astrocytes treated with microplastics was assessed further.
2024-03-01 | GSE256038 | GEO
Project description:Soil metagenomics associated with microplastics
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:A high-density oligonucleotide microarray that targets functional genes in marine microbial community was designed as a result of a multi-institutional effort. The design is based on nucleotide sequence data obtained with metagenomics and metatranscriptomics. The chip targets ~20000 gene sequences represented by 145 gene categories relevant to microbial metabolism in the open ocean and coastal environments. The three domains of life and also viruses are represented on the chip. Using this microarray we were able to compare the functional responses of microbial communities to iron and phosphate enrichments in samples from the North Pacific Subtropical Gyre. The response was attributed to individual lineages of microorganisms including uncharacterized strains. Transcription of 68% of the gene probes was detected from a variety of microorganisms, and the patterns of gene transcription indicated a relief from iron limitation and transition into nitrogen limitation. When combined with physicochemical descriptions of each system, the use of microarrays can help to develop a comprehensive understanding of the changes in microbially-driven processes. We analyzed three samples amended with phosphate and two sample amended with iron (III) after 48h of incubation
Project description:Microplastics represent a growing environmental concern for the oceans due to their potential capability to adsorb different classes of pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polystyrene (PS) microplastics were characterized for their capability to adsorb pyrene (PYR) as model compound for polycyclic aromatic hydrocarbons, and transfer this chemical to filter feeding mussels Mytilus galloprovincialis. Gene expression analyses of Mytilus galloprovincialis exposed to polystyrene (PS) microplastics and to polystyrene contaminated with pyrene (PS-PYR) have been performed trough a DNA microarray platform.
Project description:Over 20% of Earth’s terrestrial surface is underlain by permafrost that represents one of the largest terrestrial carbon pools, with an estimated ~1700 Pg of carbon (C) contained in the upper 3 m of permafrost. Models estimate that C release from thawing permafrost might represent the largest new transfer of C from the biosphere to the atmosphere as the climate warms. Here we investigated microbial community phylogeny, genetic functional potential gene expression, and protein production patterns along a natural thaw gradient, including permafrost, the seasonally thawed active layer and nearby thawed thermokarst bog, using a combination of molecular “omics” approaches: metagenomics (MG), metatranscriptomics (MT) and metaproteomics (MP). Highlights from these analyses reveal energy yielding microbial processes and potential strategies for microbial survival in permafrost soils, and linkages between biogeochemical process rates and –omics measurements. The results provide new knowledge about microbial life and activity potential in permafrost, the potential importance of iron reduction as a survival strategy under frozen conditions in mineral soils, and the importance of methanogenesis following thaw. The multi-omics strategy demonstrated here enables better mechanistic understanding of the ecological strategies utilized by soil microbial communities in response to climate change. Associated metagenomics data available at the EBI Metagenomics portal under the accession number <a href="https://www.ebi.ac.uk/metagenomics/projects/SRP052575">SRP052575</a>.
2015-03-17 | PXD001131 | Pride
Project description:Metagenomics and Metatranscriptomics of OSPW