Project description:In this study, we explored the genes involved with the host communication and colonization process through transcriptomic profiling of Trichoderma virens as it colonizes hydroponic maize roots, compared to the fungus without roots present.
Project description:Epigenetic modification is important for cellular functions. Trimethylation of histone H3 lysine 4 (H3K4me3), which associates with transcriptional activation, is one of the important epigenetic modifications. In this study, the biological functions of UvKmt2-mediated H3K4me3 modification were characterized in Ustilaginoidea virens, which is the causal agent of the false smut disease, one of the most destructive diseases in rice. Phenotypic analyses of the ΔUvkmt2 mutant revealed that UvKMT2 is necessary for growth, conidiation, secondary spore formation, and virulence in U. virens. Immunoblotting and chromatin immunoprecipitation assay followed by sequencing (ChIP-seq) showed that UvKMT2 is required for the establishment of H3K4me3, which covers 1729 genes of the genome in U. virens. In particular, H3K4me3 modification involves in the transcriptional regulation of conidiation-related and pathogenic genes. The down-regulation of UvHOG1 and UvPMK1 genes may be one of the main reasons for the reduced pathogenicity and stresses adaptability of the ∆Uvkmt2 mutant. Overall, H3K4me3, established by histone methyltransferase UvKMT2, contributes to fungal development, secondary spore formation, virulence, and various stresses response through transcriptional regulation in U. virens.
Project description:Trichoderma spp. are filamentous fungi that colonize plant roots conferring beneficial effects to plants, indirectly through the induction of their defense systems or directly through the suppression of phytopathogens in the rhizosphere. Transcriptomic analyses of Trichoderma emerged as a powerful method for identifying the molecular events underlying the establishment of this beneficial relationship. Here, we focus on the transcriptomic response of Trichoderma virens during its interaction with Arabidopsis seedlings. The main response of T. virens to co-cultivation with Arabidopsis was the repression of gene expression. The biological processes of transport and metabolism of carbohydrates were downregulated, including a set of cell-wall-degrading enzymes putatively relevant for root-colonization. Repression of such genes reached their basal levels at later times of the interaction when genes belonging to the biological process of copper ion transport were induced, a necessary process providing copper as a cofactor for cell-wall degrading enzymes with auxiliary activities (AAs) class. RNA-Seq analysis showed the induction of a member of the SNF2 family of chromatin remodelers/helicase-related proteins, which was named IPA-1 (Increased Protection of Arabidopsis-1). Sequence analyses of IPA-1 showed as its closest relatives members of the Rad5/Rad16- and SNF2-subfamilies; however, it grouped into a different clade. Although deletion of ipa-1 in T. virens did not affect its growth, the antibiosis of Δipa-1 culture filtrates showed a diminished effect against Rhizoctonia solani but remained unaltered against Botrytis cinerea. Triggering of the plant defense genes in plants treated with Δipa-1 was higher, showing enhanced resistance against Pseudomonas syringae but not against B. cinerea as compared to wild type.