Project description:Despite belonging to the most abundant and widespread genus of freshwater fishes in the region, the carp gudgeons of eastern Australia (genus Hypseleotris) have proved taxonomically and ecologically problematic to science since the 19th century. Several molecular studies and a recent taxonomic revision have now shed light on the complex biology and evolutionary history that underlies this group. These studies have demonstrated that carp gudgeons include a sexual/unisexual complex (five sexual species plus an assortment of hemiclonal lineages), many members of which also co-occur with an independent sexual relative, the western carp gudgeon (H. klunzingeri). Here, we fill yet another knowledge gap for this important group by presenting a detailed molecular phylogeographic assessment of the western carp gudgeon across its entire and extensive geographic range. We use a suite of nuclear genetic markers (SNPs and allozymes) plus a matrilineal genealogy (cytb) to demonstrate that H. klunzingeri s.l. also displays considerable taxonomic and phylogeographic complexity. All molecular datasets concur in recognizing the presence of multiple candidate species, two instances of historic between-species admixture, and the existence of a natural hybrid zone between two of the three candidate species found in the Murray-Darling Basin. We also discuss the major phylogeographic patterns evident within each taxon. Together, these analyses provide a robust molecular, taxonomic, and distributional framework to underpin future morphological and ecological investigations on this prominent member of regional freshwater ecosystems in eastern Australia.
Project description:In this study, we obtained the complete mitochondrial genome of Hypseleotris cyprinoides, which was 16520 bp in length. The mitogenome contained 37 genes, including the typical set of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 Ribosomal RNA (rRNA) genes. A, C, G, and T distribution was 28.57%, 29.91%, 16.99%, and 24.53%, respectively. The length of the total protein-coding genes was 11441 bp, which accounts for 66.80% of the whole mitochondrial genome. The Maximum Likelihood (ML) phylogenetic analysis based on the concatenated nucleotide sequences of 13 PCGs showed that H.cyprinoides as a sister species to Hypseleotris klunzingeri was clustered in the family Hypseleotris. The discovery of the complete mitochondrial genome of H.cyprinoides would help to conduct in-depth research on Hypseleotris.