Project description:Microplastics represent a growing environmental concern for the oceans due to their potential capability to adsorb different classes of pollutants, thus representing a still unexplored source of exposure for aquatic organisms. In this study polystyrene (PS) microplastics were characterized for their capability to adsorb pyrene (PYR) as model compound for polycyclic aromatic hydrocarbons, and transfer this chemical to filter feeding mussels Mytilus galloprovincialis. Gene expression analyses of Mytilus galloprovincialis exposed to polystyrene (PS) microplastics and to polystyrene contaminated with pyrene (PS-PYR) have been performed trough a DNA microarray platform.
Project description:Bio-augmentation could be a promising strategy to improve processes for treatment and resource recovery from wastewater. In this study, the Gram-positive bacterium Bacillus subtilis was co-cultured with the microbial communities present in wastewater samples with high concentrations of nitrate or ammonium. Glucose supplementation (1%) was used to boost biomass growth in all wastewater samples. In anaerobic conditions, the indigenous microbial community bio-augmented with B. subtilis was able to rapidly remove nitrate from wastewater. In these conditions, B. subtilis overexpressed nitrogen assimilatory and respiratory genes including NasD, NasE, NarG, NarH, and NarI, which arguably accounted for the observed boost in denitrification. Next, we attempted to use the the ammonium- and nitrate-enriched wastewater samples bio-augmented with B. subtilis in the cathodic compartment of bioelectrochemical systems (BES) operated in anaerobic condition. B. subtilis only had low relative abundance in the microbial community, but bio-augmentation promoted the growth of Clostridium butyricum and C. beijerinckii, which became the dominant species. Both bio-augmentation with B. subtilis and electrical current from the cathode in the BES promoted butyrate production during fermentation of glucose. A concentration of 3.4 g/L butyrate was reached with a combination of cathodic current and bio-augmentation in ammonium-enriched wastewater. With nitrate-enriched wastewater, the BES effectively removed nitrate reaching 3.2 mg/L after 48 h. In addition, 3.9 g/L butyrate was produced. We propose that bio-augmentation of wastewater with B. subtilis in combination with bioelectrochemical processes could both boost denitrification in nitrate-containing wastewater and enable commercial production of butyrate from carbohydrate- containing wastewater, e.g. dairy industry discharges. These results suggest that B. subtilis bio-augmentation in our BES promotes simultaneous wastewater treatment and butyrate production.
2020-05-15 | GSE150480 | GEO
Project description:Metagenomic analysis of bioelectrochemical bacteria in wastewater
Project description:Cellular uptake and cytotoxicity data from neural cells treated with microplastics were compared and contrasted. Transcriptomic data obtained by RNA-seq from astrocytes treated with microplastics was assessed further.
Project description:The Patancheru area near Hyderabad in India is recognized as a key link in the global supply chain for many bulk drugs. A central treatment plant receives wastewater from about 90 different manufacturers and the resulting complex effluent has contaminated surface, ground and drinking water in the region. Ecotoxicological testing of the effluent has shown adverse effects for several organisms, including aquatic vertebrates. In an attempt to start investigating how exposure to effluent-contaminated water may affect humans and other terrestrial vertebrates, rats were tube-fed effluent. Results from microarray and quantitative polymerase chain reaction assays indicated, however, no marked effects on hepatic gene expression after five days exposure. Neither did a clinical analysis of blood serum constituents used as biomarkers for human disease reveal any significant changes, nor were there any effects on weight gain. Taken together, we could not find evidence for any acute toxicity in the rat; however, we cannot rule out that higher doses of effluent or a longer exposure time may still be associated with risks for terrestrial vertebrates. 10 rats (5 controls and 5 exposed to effluent) were subjected to microarray analysis. Further information is available in Rutgersson et al., 2010.
Project description:The Patancheru area near Hyderabad in India is recognized as a key link in the global supply chain for many bulk drugs. A central treatment plant receives wastewater from about 90 different manufacturers and the resulting complex effluent has contaminated surface, ground and drinking water in the region. Ecotoxicological testing of the effluent has shown adverse effects for several organisms, including aquatic vertebrates. In an attempt to start investigating how exposure to effluent-contaminated water may affect humans and other terrestrial vertebrates, rats were tube-fed effluent. Results from microarray and quantitative polymerase chain reaction assays indicated, however, no marked effects on hepatic gene expression after five days exposure. Neither did a clinical analysis of blood serum constituents used as biomarkers for human disease reveal any significant changes, nor were there any effects on weight gain. Taken together, we could not find evidence for any acute toxicity in the rat; however, we cannot rule out that higher doses of effluent or a longer exposure time may still be associated with risks for terrestrial vertebrates.
Project description:To explore the regulatory mechanism of intestinal flora in Citrobacter rodentium -induced intestinal infection by transcriptome analysis at miRNA molecular level.