Project description:Understanding biological diversity and distribution patterns at multiple spatial scales is a central issue in ecology. Here, we investigated the biogeographical patterns of functional genes in soil microbes from 24 arctic heath sites using GeoChip-based metagenomics and principal coordinates of neighbour matrices (PCNM)-based analysis. Functional gene richness varied considerably among sites, while the proportions of each major functional gene category were evenly distributed. Functional gene composition varied significantly at most medium and broad spatial scales, and the PCNM analyses indicated that 14-20% of the variation in total and major functional gene categories could be attributed primarily to relatively broad-scale spatial effects that were consistent with broad-scale variation in soil pH and total nitrogen. The combination of variance partitioning and multi-scales analysis indicated that spatial distance effects contributed 12% to variation in functional gene composition,whereas environmental factors contributed only 3%. This relatively strong influence of spatial as compared to environmental variation in determining functional gene distributions contrasts sharply with typical microbial phylotype/species-based biogeographical patterns in the Arctic and elsewhere. Our results suggest that the distributions of soil functional genes cannot be predicted from phylogenetic distributions because spatial factors associated with historical contingencies are relatively important determinants of their biogeography.
Project description:Rheb, a ras-like small GTPase conserved from human to yeast, controls Tor kinase and plays a central role in regulation of cell growth depending on extracellular conditions. Fission yeast Rheb regulates amino acid uptake as well as response to nitrogen starvation. In this study we generated two mutants of Rheb, rhb1-DA4 and rhb1-DA8, and characterized them genetically. V17A mutation within the G1 box defined for the ras-like GTPases was responsible for rhb1-DA4, and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events, induction of a meiosis initiating gene mei2+ and cell division without cell growth, are a typical response to nitrogen starvation. Under nitrogen-rich conditions, Rheb stimulates Tor kinase, which, in turn, suppresses the response to nitrogen starvation. While amino acid uptake was prevented by both rhb1-DA4 and rhb1-DA8 in a dominant fashion, the response to nitrogen starvation was prevented only by rhb1-DA4. rhb1-DA8 thereby allowed genetic dissection of the Rheb-dependent signaling cascade. We postulate that Rheb in fission may have two downstream elements, Tor kinase for regulation of the response to nitrogen starvation and the other element for regulation of amino acid uptake.
Project description:4 rice genotypes were sequenced for nitrogen usage under low and high nitrogen conditions to determine the uptake, and later combine with RNASeq data to figure which genes were modulated
2022-12-31 | GSE198560 | GEO
Project description:Biogeographic inferences across spatial and evolutionary scales
Project description:We developed an analysis pipeline that can extract microbial sequences from Spatial Transcriptomic (ST) data and assign taxonomic labels, generating a spatial microbial abundance matrix in addition to the default host expression matrix, enabling simultaneous analysis of host expression and microbial distribution. We called the pipeline Spatial Meta-transcriptome (SMT) and applied it on both human and murine intestinal sections and validated the spatial microbial abundance information with alternative assays. Biological insights were gained from this novel data that that demonstrated host-microbe interaction at various spatial scales. Finally, we tested experimental modification that can increase microbial capture while preserving host spatial expression quality and, by use of positive controls, quantitatively demonstrated the capture efficiency and recall of our methods. This proof of concept work demonstrates the feasibility of Spatial Meta-transcriptomic analysis, and paves the way for further experimental optimization and application.
Project description:PII signal transduction proteins are widely spread among all domains of life where they regulate a multitude of carbon and nitrogen metabolism related processes. Non-diazotrophic cyanobacteria can utilize a high variety of organic and inorganic nitrogen sources. In recent years, several physiological studies indicated an involvement of the cyanobacterial PII protein in regulation of ammonium, nitrate/nitrite and cyanate uptake. However, direct interaction of PII has not been demonstrated so far. In this study, we used biochemical, molecular genetic and physiological approaches to demonstrate that PII regulates all relevant nitrogen uptake systems in Synechocystis sp. strain PCC 6803: PII controls ammonium uptake by interacting with the Amt1 ammonium permease, probably similar to the known regulation of E. coli ammonium permease AmtB by the PII homologue GlnK. We could further clarify that PII mediates the ammonium- and dark-induced inhibition of nitrate uptake by interacting with the NrtC and NrtD subunits of the nitrate/nitrite transporter NrtABCD. We further identified the ABC-type urea transporter UrtABCDE as novel PII target. PII interacts with the UrtE subunit without involving the standard interaction surface of PII interactions. The deregulation of urea uptake in a PII deletion mutant causes ammonium excretion when urea is provided as nitrogen source. Furthermore, the urea hydrolyzing urease enzyme complex appears to be coupled to urea uptake. Overall, this study underlines the great importance of the PII signal transduction protein in the regulation of nitrogen utilization in cyanobacteria.
Project description:Spatial patterns of gene expression span many scales, and are shaped by both local (e.g. cell-cell interactions) and global (e.g. tissue, organ) context. However, most in situ methods for profiling gene expression either average local contexts or are restricted to limited fields of view. Here we introduce sci-Space, a scale-flexible method that retains single cell resolution while resolving spatial heterogeneity in gene expression at larger scales. As a proof-of-concept, we apply sci-Space to the developing mouse embryo (E14), capturing the approximate spatial coordinates of profiled cells from whole embryo serial sections.
Project description:The transcriptome profile was examined in four wheat genotypes in roots and shoots under nitrogen stressed condition which indicates genotype specific transcript data-set apart from the common transcripts. Unique genes was identified for nitrogen uptake and utilization process. We used microarrays to detail the gene expression and identify the candidate genes related to uptake and utilization of nitrogen in root and shoot tissues of wheat genotypes.
Project description:Microarray based expression study in two rice contrasting genotypes under low nitrogen hydroponics condition microarray revealed upregulated transporter genes for nitrogen uptake in shoot tissues