Project description:To investigate the relationship between H3K4me1/H3K4me2/H3K4me3 and transcription levels and in Arabidopsis thaliana,we anlysis the RNA-seq and ChIP-seq data to quantified the transcription and modification levels on Arabidopsis genes.We then performed H3K4 methylation occupancy analysis in different RNA transcription levels using data obtained from ChIP-seq and RNA-seq.
Project description:We previously mapped ETV1 using ChIP-Seq in GIST48 cells (GSE22441). Here, we map the enhancer landscape marked by histone H3K4me1 and the promoter landscape marked by histone H3K4me3 in GIST48 cells. Crosslink ChIP-Seq of H3K4me1 and H3K4me3 in GIST48 cells
Project description:Trimethylation of histone H3 lysine 4 (H3K4me3) is associated with transcriptional start sites and proposed to regulate transcription initiation. However, redundant functions of the H3K4 SET1/COMPASS methyltransferase complexes complicate elucidation of the specific role of H3K4me3 in transcriptional regulation. Here, by using mouse embryonic stem cells (mESCs) as a model system, we show that acute ablation of shared subunits of the SET1/COMPASS complexes leads to complete loss of all H3K4 methylation. H3K4me3 turnover occurs more rapidly than H3K4me1 and H3K4me2 and is dependent on KDM5 demethylases. Surprisingly, acute loss of H3K4me3 does not have detectable effects on transcriptional initiation but leads to a widespread decrease in transcriptional output, an increase in RNA polymerase II (RNAPII) pausing and slower elongation. Notably, we show that H3K4me3 is required for the recruitment of the Integrator Complex Subunit 11 (INTS11), which is essential for the eviction of paused RNAPII and transcriptional elongation. Thus, our study demonstrates a distinct role for H3K4me3 in transcriptional pause-release and elongation rather than transcriptional initiation.
Project description:Here we used ChIP-MS to quantitatively profile chromatin-associated proteins that are specifically associated with H3K4me1- and H3K4me3-modified nucleosomes in IMR-90 chromatin.
Project description:ENCODE ChIP/chip study using human lymphoblastoid cell line GM06990; human cervix carcinoma cell line HeLaS3; human fetal lung fibroblast cell line HFL1; human T cell line MOLT4; chimpanzee lymphoblastoid cell line PTR8; and anti Histone H3K4me1 (Abcam; ab8895); H3K4me2 (Abcam; ab7766); H3K4me3 (Abcam; ab8580); H3ac (Upstate; 06-599) and H4ac (Upstate; 06-866) antibodies. The experiment was conducted in three biological replicates (1;2;3) with up to two technical duplicates (a;b).
Project description:Considered as fundamental epigenetic regulators controlling many key cellular processes, histone modifications are a well-conserved and widely studied class of epigenetic modifications. Genome-wide studies have identified enhancers as DNA sequences that bind to H3K4me1 and H3K27ac and promoters as DNA sequences that bind to H3K4me3. To explore how the Twist1 complex (Twist1/YY1/p300) regulates miR-9 expression, we performed ChIP-seq in PLC-PRF-5 cells, providing a panorama of p300, H3K4me3, H3K4me1, and H3K27ac.
Project description:FOXA1 is a pioneer factor that is important in hormone dependent cancer cells to stabilise nuclear receptors, such as estrogen receptor (ER) to chromatin. FOXA1 binds to enhancers regions that are enriched in H3K4mono- and dimethylation (H3K4me1, H3K4me2) histone marks and evidence suggests that these marks are requisite events for FOXA1 to associate with enhancers to initate subsequent gene expression events. However, exogenous expression of FOXA1 has been shown to induce H3K4me1 and H3K4me2 signal at enhancer elements and the order of events and the functional importance of these events is not clear. We performed a FOXA1 Rapid Immunoprecipitation Mass Spectrometry of Endogenous Proteins (RIME) screen in ERα-positive MCF-7 breast cancer cells in order to identify FOXA1 interacting partners and we found histone-lysine N-methyltransferase (MLL3) as the top FOXA1 interacting protein. MLL3 is typically thought to induce H3K4me3 at promoter regions, but recent findings suggest it may contribute to H3K4me1 deposition, in line with our observation that MLL3 associates with an enhancer specific protein. We performed MLL3 ChIP-seq in breast cancer cells and unexpectedly found that MLL3 binds mostly at non-promoter regions enhancers, in contrast to the prevailing hypothesis. MLL3 was shown to occupy regions marked by FOXA1 occupancy and as expected, H3K4me1 and H3K4me2. MLL3 binding was dependent on FOXA1, indicating that FOXA1 recruits MLL3 to chromatin. Motif analysis and subsequent genomic mapping revealed a role for Grainy head like protein-2 (GRHL2) which was shown to co-occupy regions of the chromatin with MLL3. Regions occupied by all three factors, namely FOXA1, MLL3 and GRHL2, were most enriched in H3K4me1. MLL3 silencing decreased H3K4me1 at enhancer elements, but had no appreciable impact on H3K4me3 at enhancer elements. We identify a complex relationship between FOXA1, MLL3 and H3K4me1 at enhancers in breast cancer and propose a mechanism whereby the pioneer factor FOXA1 can interact with a chromatin modifier MLL3, recruiting it to chromatin to facilitate the deposition of H3K4me1 histone marks, subsequently demarcating active enhancer elements.
Project description:We previously mapped ETV1 using ChIP-Seq in GIST48 cells (GSE22441). Here, we map the enhancer landscape marked by histone H3K4me1 and the promoter landscape marked by histone H3K4me3 in GIST48 cells.
Project description:Using high-throughput sequencing, we probed the H3K4me2 and H3K4me3 landscape in the bam mutant testes which are enriched with earlier stages of male germline.