Project description:We characterized the bacterial diversity of chlorinated drinking water from three surface water treatment plants supplying the city of Paris, France. For this purpose, we used serial analysis of V6 ribosomal sequence tag (SARST-V6) to produce concatemers of PCR-amplified ribosomal sequence tags (RSTs) from the V6 hypervariable region of the 16S rRNA gene for sequence analysis. Using SARST-V6, we obtained bacterial profiles for each drinking water sample, demonstrating a strikingly high degree of biodiversity dominated by a large collection of low-abundance phylotypes. In all water samples, between 57.2-77.4% of the sequences obtained indicated bacteria belonging to the Proteobacteria phylum. Full-length 16S rDNA sequences were also generated for each sample, and comparison of the RSTs with these sequences confirmed the accurate assignment for several abundant bacterial phyla identified by SARST-V6 analysis, including members of unclassified bacteria, which account for 6.3-36.5% of all V6 sequences. These results suggest that these bacteria may correspond to a common group adapted to drinking water systems. The V6 primers used were subsequently evaluated with a computer algorithm to assess their hybridization efficiency. Potential errors associated with primer-template mismatches and their impacts on taxonomic group detection were investigated. The biodiversity present in all three drinking water samples suggests that the bacterial load of the drinking water leaving treatment plants may play an important role in determining the downstream community dynamics of water distribution networks. 3 different drinking water samples (Orly, Ivry, Joinville drinking water sample)
Project description:We characterized the bacterial diversity of chlorinated drinking water from three surface water treatment plants supplying the city of Paris, France. For this purpose, we used serial analysis of V6 ribosomal sequence tag (SARST-V6) to produce concatemers of PCR-amplified ribosomal sequence tags (RSTs) from the V6 hypervariable region of the 16S rRNA gene for sequence analysis. Using SARST-V6, we obtained bacterial profiles for each drinking water sample, demonstrating a strikingly high degree of biodiversity dominated by a large collection of low-abundance phylotypes. In all water samples, between 57.2-77.4% of the sequences obtained indicated bacteria belonging to the Proteobacteria phylum. Full-length 16S rDNA sequences were also generated for each sample, and comparison of the RSTs with these sequences confirmed the accurate assignment for several abundant bacterial phyla identified by SARST-V6 analysis, including members of unclassified bacteria, which account for 6.3-36.5% of all V6 sequences. These results suggest that these bacteria may correspond to a common group adapted to drinking water systems. The V6 primers used were subsequently evaluated with a computer algorithm to assess their hybridization efficiency. Potential errors associated with primer-template mismatches and their impacts on taxonomic group detection were investigated. The biodiversity present in all three drinking water samples suggests that the bacterial load of the drinking water leaving treatment plants may play an important role in determining the downstream community dynamics of water distribution networks.
Project description:To determine whether and how warming affects the functional capacities of the active microbial communities, GeoChip 5.0 microarray was used. Briefly, four fractions of each 13C-straw sample were selected and regarded as representative for the active bacterial community if 16S rRNA genes of the corresponding 12C-straw samples at the same density fraction were close to zero.
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles.
Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.
Project description:Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long term metal pollution. Studying twelve sites located along two distinct gradients of metal pollution in Southern Poland revealed that both community composition (via MiSeq Illumina sequencing of 16S rRNA genes) and functional gene potential (using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level significantly impacted microbial community structure (p = 0.037), but not bacterial taxon richness. Metal pollution altered the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal resistance genes showed significant correlations with metal concentrations in soil, although no clear impact of metal pollution levels on overall functional diversity and structure of microbial communities was observed. While screens of phylogenetic marker genes, such as 16S rRNA, provided only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appeared to be a more promising strategy. This study showed that the effect of metal pollution on soil microbial communities was not straightforward, but could be filtered out from natural variation and habitat factors by multivariate statistical analysis and spatial sampling involving separate pollution gradients.
Project description:Perfluoroalkyl acid carboxylates and sulfonates (PFAAs) have many consumer and industrial applications. The persistence and widespread distribution of these compounds in humans have brought them under intense scrutiny. Limited pharmacokinetic data is available in humans; however, human data exists for two communities with drinking water contaminated by PFAAs. Also, there is toxicological and pharmacokinetic data for monkeys, which can be quite useful for cross-species extrapolation to humans. The goal of this research was to develop a physiologically-based pharmacokinetic (PBPK) model for PFOA and PFOS for monkeys and then scale this model to humans in order to describe available human drinking water data. The monkey model simulations were consistent with available PK data for monkeys. The monkey model was then extrapolated to the human and then used to successfully simulate the data collected from residents of two communities exposed to PFOA in drinking water. Human PFOS data is minimal; however, using the half-life estimated from occupational exposure, our model exhibits reasonable agreement with the available human serum PFOS data. It is envisioned that our PBPK model will be useful in supporting human health risk assessments for PFOA and PFOS by aiding in understanding of human pharmacokinetics.
Model is encoded by Ruby and submitted to BioModels by Ahmad Zyoud
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles. A total of 56 samples were collected that represent water and sediment samples from 14 sample sites over two different time points (November 18 and 25, 2011).
Project description:To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. Acid mine drainage (AMD) presents numerous problems to the aquatic life and surrounding ecosystems. However, little is known about the geographic distribution, diversity, composition, structure and function of AMD microbial communities. In this study, we analyzed the geographic distribution of AMD microbial communities from twenty sites using restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, and the results showed that AMD microbial communities were geographically distributed and had high variations among different sites. Then an AMD-specific microarray was used to further analyze nine AMD microbial communities, and showed that those nine AMD microbial communities had high variations measured by the number of detected genes, overlapping genes between samples, unique genes, and diversity indices. Statistical analyses indicated that the concentrations of Fe, S, Ca, Mg, Zn, Cu and pH had strong impacts on both phylogenetic and functional diversity, composition, and structure of AMD microbial communities. This study provides insights into our understanding of the geographic distribution, diversity, composition, structure and functional potential of AMD microbial communities and key environmental factors shaping them. This study investigated the geographic distribution of Acid Mine Drainages microbial communities using a 16S rRNA gene-based RFLP method and the diversity, composition and structure of AMD microbial communities phylogenetically and functionally using an AMD-specific microarray which contained 1,072 probes ( 571 related to 16S rRNA and 501 related to functional genes). The functional genes in the microarray were involved in carbon metabolism (158), nitrogen metabolism (72), sulfur metabolism (39), iron metabolism (68), DNA replication and repair (97), metal-resistance (27), membrane-relate gene (16), transposon (13) and IST sequence (11).
Project description:A combination of shotgun metaproteomics and 16S rRNA gene pyrosequencing wasused to identify potential functional pathways and key microorganisms involved in long-chain fatty acids (LCFA) anaerobic conversion. Microbial communities degrading saturated- and unsaturated-LCFA were compared. Archaeal communities were mainly composed of Methanosaeta, Methanobacterium and Methanospirillum species, both in stearate (saturated C18:0) and oleate (mono-unsaturated C18:1) incubations. Over 80% of the 16S rRNA gene sequences clustered within the Methanosaeta genus, which is in agreement with the high number of proteins assigned to this group (94%). Archaeal proteins related with methane metabolism were highly expressed. Bacterial communities were rather diverse and the composition dissimilar between incubations with saturated- and unsaturated-LCFA. Stearate-degrading communities were enriched in Deltaproteobacteria (34% of the assigned sequences), while microorganisms clustering within the Synergistia class were more predominant in oleate incubation (25% of the assigned sequences). Bacterial communities were diverse and active, given by the high percentage of proteins related with mechanisms of energy production. Several proteins were assigned to syntrophic bacteria, emphasizing the importance of the interactions between acetogens and methanogens in energy exchange and formation in anaerobic LCFA-rich environments.