Project description:We perform sc-RNAseq in NASH livers from WT and miR-33-AlbCRE conditional knock-out mice. Liver were isolated from mice after 6 months of feeding a choline deficient high fat diet to analyze the effect of miR-33 deficiency specifically in hepatocytes and the crosstalk between hepatocytes and other cell types in the liver.
Project description:We perform RNAseq in NAFLD livers from WT and miR-33-AlbCRE conditional knock-out mice. Liver were isolated from mice after 3 months of feeding a choline deficient high fat diet to analyze the effect of miR-33 deficiency.
Project description:Non-alcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that can progress from simple fatty liver disease to non-alcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism and excretion (ADME) of drugs. Differential gene expression between three clinically defined pathological groups; normal, steatosis and NASH was analyzed. The samples were diagnosed as normal, steatotic, NASH with fatty liver (NASH fatty) and NASH without fatty liver (NASH NF). Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChipM-. Human 1.0ST arrays
Project description:Background: Senescent hepatocytes accumulate in parallel with fibrosis progression during NASH. The mechanisms that enable progressive expansion of nonreplicating cell populations and the significance of that process in determining NASH outcomes are unclear. Many types of senescing cells upregulate the THBD-PAR-1 signaling axis to remain viable. Vorapaxar, an FDA-approved PAR-1 inhibitor, blocks the activity of that pathway. We used vorapaxar to determine if and how THBD-PAR1 signaling promotes fibrosis progression in NASH. Methods: We evaluated the THBD-PAR1 pathway in liver biopsies from NAFLD patient cohorts with a spectrum of liver fibrosis. Chow fed mice were treated with viral vectors to over-express p16 specifically in hepatocytes and induce replicative senescence. Effects on the THBD-PAR-1 axis and regenerative capacity were assessed; the transcriptome of p16 over-expressing hepatocytes was characterized and we examined how conditioned medium from senescent but viable (dubbed ‘undead’) hepatocytes reprograms hepatic stellate cells. A genetically obese mouse model of NASH with little liver fibrosis, and a diet-induced mouse model of NASH with advanced fibrosis were treated with vorapaxar to determine effects on hepatocyte senescence and liver damage. Results: Inducing senescence up-regulates the THBD-PAR1 signaling axis in hepatocytes and induces their expression of fibrogenic factors, including hedgehog ligands. Hepatocyte THBD-PAR1 signaling increases in NAFLD and supports sustained hepatocyte senescence that limits effective liver regeneration and promotes maladaptive repair. Inhibiting PAR-1 signaling with vorapaxar interrupts this process, reduces the burden of ‘undead’ senescent cells, and safely improves NASH and fibrosis despite ongoing lipotoxic stress Conclusion: The THBD-PAR1 signaling axis is a novel therapeutic target for NASH because blocking this pathway prevents accumulation of senescing but viable hepatocytes that generate factors that promote maladaptive liver repair.
Project description:To characterize gene expression changes in arachidonic acid metabolism pathway genes in the presense of non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) mice administered were administered an atherogenic diet for a period of four weeks. Administration of the atherogenic diet resulted in significant enrichment of the arachidonic acid metabolism pathway by gene set enrichment analysis (GSEA). The core enrichment subset of genes was down-regulated in mice administered the atherogenic diet and the majority of the genes that were down-regulated were cytochrome P450s. A total of 4 wild-type mice were administered a standard diet (STD; control group) and 4 wild-type mice were administered a HFHC diet (HFHC).
Project description:To understand the role of adipose tissue senescence in NAFLD/NASH, RNA sequencing was performed in the visceral adipose tissue of NAFLD and NASH pateints.
Project description:Human genetic studies have identified several MARC1 variants as protective against non-alcoholic fatty liver diseases (NAFLD). The MARC1 variants are associated with reduced lipid profiles, liver enzymes, and liver-related mortality. However, the role of mitochondrial amidoxime reducing component 1 (mARC1), encoded by MARC1, in NAFLD is still unknown and the therapeutic potential of this target has never been developed. Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine conjugated mouse mARC1 siRNA to address this. In ob/ob mice, knockdown of mARC1 in mouse hepatocytes resulted in decreased liver weight, serum lipid enzymes, low-density lipoprotein cholesterol, and liver triglycerides. Loss of mARC1 also improved the lipid profiles and attenuated liver pathological changes in two diet-induced nonalcoholic steatohepatitis (NASH) mouse models. A comprehensive analysis of mARC1-deficient liver in NASH by metabolomics, proteomics, and lipidomics showed that mARC1 knockdown partially restored metabolites and lipids altered by diets. Taken together, loss of mARC1 protects mouse liver from NASH, suggesting a potential therapeutic approach of NASH by downregulation of mARC1 in hepatocytes.
Project description:Non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) is a significant risk factor for hepatocellular carcinoma (HCC). However, a preclinical model of progressive NAFLD/NASH is largely lacking. Here, we report that mice with hepatocyte-specific deletion of Tid1, encoding a mitochondrial cochaperone, tended to develop NASH-dependent HCC. Mice with hepatic Tid1 deficiency showed impairing mitochondrial function and causing fatty acid metabolic dysregulation; meanwhile, sequentially developed fatty liver, NASH, and cirrhosis/HCC in a diethylnitrosamine (DEN) induced oxidative environment. The pathological signatures of human NASH, including cholesterol accumulation and activation of inflammatory and apoptotic signaling pathways, are also present in these mice. Clinically, low Tid1 expression was associated with unfavorable prognosis in patients with HCC. Empirically, hepatic Tid1 deficiency directly disrupts entire mitochondria that play a key role in the NASH-dependent HCC development. Overall, we established a new mouse model that develops NASH-dependent HCC and provides a promising approach to improve the treatment.
Project description:We investigated the hepatic transcriptome of 58 biopsy-proven NAFLD patients at multiple stages of the disease (NAFL, NASH with mild fibrosis, NASH with advanced fibrosis) with the aim of describing the pathophysiological events driving the development and progression of NASH.