Project description:Saccharomyces cerevisiae IMS0002 which, after metabolic and evolutionary engineering, ferments the pentose sugar arabinose. Glucose and arabinose-limited anaerobic chemostat cultures of IMS0002 and its non-evolved ancestor IMS0001 were subjected to transcriptome analysis to identify key genetic changes contributing to efficient arabinose utilization by strain IMS0002.
Project description:The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium Lb. bulgaricus . S. cerevisiae and Lb. bulgaricus are both frequently encountered in kefir, a fermented dairy product (25). In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together (19,26-30). The design of the cultivation conditions was based on the observation that Lb. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not Lb. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial M-NM-2-galactosidase. Mixed populations of yeasts and lactic acid bacteria occur in many dairy, food and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the co-cultures, five mechanisms of interaction were identified. 1. Lb. bulgaricus hydrolyses lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. bulgaricus, is excreted and provides a carbon source for yeast. 2. In pure cultures, Lb. bulgaricus only grows at increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. 3. Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacteria. 4. A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. bulgaricus. 5. Transcriptome analysis of Lb. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipids metabolism suggesting either a competition of the two microorganisms for fatty acids, or a response to the ethanol produced by S. cerevisiae. To our knowledge, this is the first transcriptome study of a cross-kingdom binary mixed culture that analyses responses of both microorganisms. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigated microbial interaction in mixed populations. To investigate the impact of of co-cultivation with Lb. bulgaricus on S. cerevisiae, a DNA microarray-based transcriptome analysis of S. cerevisiae's response was performed on anaerobic, lactose-limited chemostat cultures grown in the presence and absence of L. bulgaricus.
Project description:The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium Lb. bulgaricus . S. cerevisiae and Lb. bulgaricus are both frequently encountered in kefir, a fermented dairy product (25). In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together (19,26-30). The design of the cultivation conditions was based on the observation that Lb. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not Lb. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial β-galactosidase. Mixed populations of yeasts and lactic acid bacteria occur in many dairy, food and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the co-cultures, five mechanisms of interaction were identified. 1. Lb. bulgaricus hydrolyses lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. bulgaricus, is excreted and provides a carbon source for yeast. 2. In pure cultures, Lb. bulgaricus only grows at increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. 3. Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacteria. 4. A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. bulgaricus. 5. Transcriptome analysis of Lb. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipids metabolism suggesting either a competition of the two microorganisms for fatty acids, or a response to the ethanol produced by S. cerevisiae. To our knowledge, this is the first transcriptome study of a cross-kingdom binary mixed culture that analyses responses of both microorganisms. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigated microbial interaction in mixed populations.
Project description:The present study aims to explore chemostat-based transcriptome analysis of mixed cultures by investigating interactions between the yeast S. cerevisiae and the lactic acid bacterium L. bulgaricus . S. cerevisiae and L. bulgaricus are both frequently encountered in kefir, a fermented dairy product. In the context of this study, this binary culture serves as a model for the many traditional food and beverage fermentation processes in which yeasts and lactic acid bacteria occur together. The design of the cultivation conditions was based on the observation that L. bulgaricus, but not S. cerevisiae, can use lactose as a carbon source for growth and that S. cerevisiae, but not L. bulgaricus, can grow on galactose that is released upon hydrolysis of lactose by the bacterial β-galactosidase. Mixed populations of yeasts and lactic acid bacteria occur in many dairy, food and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the co-cultures, five mechanisms of interaction were identified. 1. L. bulgaricus hydrolyses lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by L. bulgaricus, is excreted and provides a carbon source for yeast. 2. In pure cultures, L. bulgaricus only grows at increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. 3. Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacteria. 4. A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by L. bulgaricus. 5. Transcriptome analysis of L. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipids metabolism suggesting either a competition of the two microorganisms for fatty acids, or a response to the ethanol produced by S. cerevisiae.
Project description:Saccharomyces cerevisiae IMS0002 which, after metabolic and evolutionary engineering, ferments the pentose sugar arabinose. Glucose and arabinose-limited anaerobic chemostat cultures of IMS0002 and its non-evolved ancestor IMS0001 were subjected to transcriptome analysis to identify key genetic changes contributing to efficient arabinose utilization by strain IMS0002. Glucose- and arabinose limited anaerobic chemostat cultivation of strains IMS0002 and glucose limited IMS0001 at D= 0.03 h-1
Project description:Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO2-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO2 and 21% O2. This observation indicated that respiratory metabolism is more sensitive to CO2 than fermentative metabolism. Consistent with the more pronounced physiological effects of CO2 in respiratory cultures, the number of CO2-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO2 concentrations. This is consistent with an uncoupling effect of CO2 and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO2 included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase Keywords: Dose reponse
Project description:Raw expression values (CHP data) for transcriptional profiling of the response of Saccharomyces cerevisiae to challenges with lactic acid at pH 3 and pH 5. Keywords: response to lactic acid
Project description:Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles