Project description:Deep sequencing of mRNA from Chinese tree shrew; Chinese tree shrew (Tupaia belangeri chinensis) is placed in Order Scandentia and embraces many unique features for a good experimental animal model. Currently, there are many attempts to employ tree shrew to establish model for a variety of human disorders such as social stress, myopia, HCV and HBV infection, and hepatocellular carcinoma .We present here a publicly available annotated genome sequence for Chinese tree shrew. Phylogenomic analysis of tree shrew and other mammalians highly supported its close affinity to primates. Characterization of key factors and signaling pathways of the nervous and immune systems in tree shrews showed that this animal had common and unique features, and had essential genetic basis for being a promising model for biomedical researches. Analysis of ploy(A)+ RNA of different specimens:kidney, pancreas, heart, liver, brain, testis and ovary form Chinese tree shrew
Project description:To determine what kind of genes are involved in vocal learning ability, we performed microarray experiments using 3 vocal learning species (zebra finch, budgerigar, Anna's hummingbird) and 2 non-vocal learning species(ring dive, and Japanese quail) from the bird group. All of the animals are male adults. They were isolated over night and had 1hour light exposure at morning. Birds who did not sing were used in this experiment.
Project description:To determine what kind of genes are involved in vocal learning ability, we performed microarray experiments using 3 vocal learning species (zebra finch, budgerigar, Anna's hummingbird) and 2 non-vocal learning species(ring dive, and Japanese quail) from bird group. All of the animals are adult males. They were isolated over night and had 1hour light exposure at morning. Birds who did not sing were used in this experiment.
Project description:Deep sequencing of mRNA from Chinese tree shrew; Chinese tree shrew (Tupaia belangeri chinensis) is placed in Order Scandentia and embraces many unique features for a good experimental animal model. Currently, there are many attempts to employ tree shrew to establish model for a variety of human disorders such as social stress, myopia, HCV and HBV infection, and hepatocellular carcinoma .We present here a publicly available annotated genome sequence for Chinese tree shrew. Phylogenomic analysis of tree shrew and other mammalians highly supported its close affinity to primates. Characterization of key factors and signaling pathways of the nervous and immune systems in tree shrews showed that this animal had common and unique features, and had essential genetic basis for being a promising model for biomedical researches.
Project description:Next-generation sequencing has been applied on seedling of two genotypes of noheading Chinese cabbage, Huaq and Wut. The goals of this study are to compare the different expression of small RNAs which is possible effect the phynotype of close genetic relation cultivars.
Project description:To determine what kind of genes are involved in vocal learning ability, we performed microarray experiments using 3 vocal learning species (zebra finch, budgerigar, Anna's hummingbird) and 2 non-vocal learning species(ring dive, and Japanese quail) from bird group. All of the animals are adult males. They were isolated over night and had 1hour light exposure at morning. Birds who did not sing were used in this experiment. We used 2-3 animals each species. We use arcopallium song nucleus for vocal learners and intermediate arcopallium for non-vocal learners. We used surrounding arcopallium as control area for both groups.
Project description:Since Japanese quail and chicken belong to the same order Galliforms, DNA sequence of both species are highly conserved and proved to be applicable for various analyses each other. Quail are commonly used to address physiological questions for reasons of economy. To test whether chicken microarrays are useful to quail samples, we compared hybridization signals of chicken and quail genomic DNA on Affymetrix chicken genome array. Keywords: comparative genomic hybridization