Project description:Microarray technology provides a powerful tool for gene discovery studies, but the development of microarrays for individual species can be expensive and time-consuming. In this study, we test the suitability of a Danio rerio oligonucleotide microarray for application in a species with few genomic resources, the coral reef fish Pomacentrus moluccensis. Coral reef fishes are expected to experience rising sea surface temperatures due to climate change. How well tropical reef fish species will respond to these increased temperatures and which genes are important for resistance and adaptation to elevated temperatures is not known. Microarray technology may help identify candidate genes for thermal stress resistance in coral reef fishes. Results from a comparative genomic DNA hybridisation experiment and direct sequence comparisons indicate that for most genes there is significant sequence similarity between P. moluccensis and D. rerio, suggesting that the D. rerio array is applicable to P. moluccensis. Heterologous microarray experiments on heat-stressed P. moluccensis identified changes in transcript abundance at 120 gene loci, with many genes involved in protein processing, transcription, and cell growth. Changes in transcript abundance for a selection of candidate genes were confirmed by quantitative real-time PCR. We have demonstrated that heterologous microarrays can be successfully employed to study non-model organisms. Such a strategy thus greatly enhances the applicability of microarray technology to the field of environmental and functional genomics and will be useful for investigating the molecular basis of thermal adaptation in coral reef fishes. Keywords: stress response, comparative genomic hybridization (CGH)
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
2024-06-16 | PXD023247 | Pride
Project description:Endemic dominant coral species associated bacteria in the South China Sea
Project description:Microarray technology provides a powerful tool for gene discovery studies, but the development of microarrays for individual species can be expensive and time-consuming. In this study, we test the suitability of a Danio rerio oligonucleotide microarray for application in a species with few genomic resources, the coral reef fish Pomacentrus moluccensis. Coral reef fishes are expected to experience rising sea surface temperatures due to climate change. How well tropical reef fish species will respond to these increased temperatures and which genes are important for resistance and adaptation to elevated temperatures is not known. Microarray technology may help identify candidate genes for thermal stress resistance in coral reef fishes. Results from a comparative genomic DNA hybridisation experiment and direct sequence comparisons indicate that for most genes there is significant sequence similarity between P. moluccensis and D. rerio, suggesting that the D. rerio array is applicable to P. moluccensis. Heterologous microarray experiments on heat-stressed P. moluccensis identified changes in transcript abundance at 120 gene loci, with many genes involved in protein processing, transcription, and cell growth. Changes in transcript abundance for a selection of candidate genes were confirmed by quantitative real-time PCR. We have demonstrated that heterologous microarrays can be successfully employed to study non-model organisms. Such a strategy thus greatly enhances the applicability of microarray technology to the field of environmental and functional genomics and will be useful for investigating the molecular basis of thermal adaptation in coral reef fishes. Keywords: stress response, comparative genomic hybridization (CGH) Common reference design [Stress response_P. moluccensis]: four individual treatment fish (heat-stressed) are contrasted in four microarray hybridisations against a pooled control consisting of four fish kept at ambient temperature. All eight fish employed in this analysis were wild-captured and are biological replicates. The experiment included dye-swap, i.e. stressed fish were labelled red in two hybridisations and green in the other two hybridisations. Common reference design [CGH_P. moluccensis and D. rerio]: four individual P. moluccensis gDNA samples are contrasted in four microarray hybridisations against a pooled gDNA sample consisting of three D. rerio. The experiment included dye-swaps.