Project description:Recent improvements in the analysis ancient biomolecules from human remains and associated dental calculus have provided new insights into the prehistoric diet and past genetic diversity of our species. Here we present a “multi-omics” study, integrating genomic and proteomic analyses of two post-Last Glacial Maximum (LGM) individuals from San Teodoro cave (Italy), to reconstruct their lifestyle and the post-LGM resettlement of Europe. Our analyses show genetic homogeneity in Sicily during the Palaeolithic, representing a hitherto unknown Italian genetic lineage within the previously identified “Villabruna cluster”. We argue that this lineage took refuge in Italy during the LGM, followed by a subsequent spread to central-western Europe. Analyses of dental calculus using genomics and proteomics showed a similar oral microbiome composition as Neandertals, but distinct from later foragers and farmers, revealing also a diet based on mammals, fish and plants. Our results demonstrate the power of using a multi-omics approach in the study of prehistoric human populations.
Project description:Paget disease of bone (PDB) is a chronic skeletal disorder with contemporary cases characterised by one or a few affected bones in individuals over 55 years of age. PDB-like changes have been noted in archaeological remains as old as Roman although accurate diagnoses and knowledge of the natural history of ancient forms of the disease are lacking. Previous macroscopic and radiographic analyses of six skeletons from a collection of 130 excavated at Norton Priory in Cheshire, UK, and dating to late Medieval times, noted unusually extensive pathological changes resembling PDB affecting up to 75% of individual skeletons. Here we report the prevalence of the disease in the collection is also remarkably high (at least 15.8% of the adult sample) with age-at-death estimations as low as 35 years. Despite these profound phenotypic differences paleoproteomic analyses identified SQSTM1/p62 (p62), a protein central to the pathological milieu of classical PDB, as one of the few non-collagenous human sequences preserved in skeletal samples, indicating that the disorder was likely an ancient precursor of contemporary PDB. Western blotting indicated abnormal migration of ancient p62 protein, with subsequent targeted proteomic analyses detecting more than 60% of the p62 primary sequence and directing sequencing analyses of ancient DNA that excluded contemporary PDB-associated SQSTM1 mutations. Together our observations indicate the ancient p62 protein is likely modified within its C-terminal ubiquitin-associated (UBA) domain. Ancient miRNAs were also remarkably well preserved in an osteosarcoma from a skeleton with extensive disease, with miR-16 expression changes consistent with that reported in contemporary PDB-associated bone tumours. Our work demonstrates the potential of proteomics to inform diagnoses of ancient disease and supports the proposal that Medieval Norton Priory was a ‘hotspot’ for an ancient form of PDB, with unusual features presumably potentiated by as yet unidentified environmental or genetic factors.
Project description:The data set contains MS/MS data on teeth extracts for Ancient DNA teeth samples ran in both positive and Negative ionization modes
2018-12-19 | MSV000083264 | GNPS
Project description:Packrat midden ancient DNA sequencing
Project description:Over the past few years, studies of DNA isolated from human fossils and archaeological remains have generated considerable novel insight into the history of our species. Several landmark papers have described the genomes of ancient human ancestors and have demonstrated that contemporary humans harbour genetic material from ancient close relatives, the Neanderthals and Denisovans, and that ancient human individuals are often genetically distinct from nearby extant populations whilst also showing affinities with populations from further afield. Across West Eurasia, there is growing genetic evidence of large-scale, dynamic population movements over the period between 10,000 to 2,000 years ago, such that the ancestry across present-day populations is likely to be a mixture of several ancient groups. Whilst these efforts are bringing the details of West Eurasian prehistory into increasing focus, studies aimed at understanding the processes behind the generation of the current West Eurasian genetic landscape have been limited by the number of populations sampled, or have been either too regional or global in their outlook. Here, using recently described haplotype-based techniques, we present the results of a systematic survey of recent admixture history across Western Eurasia and show that admixture is a universal property across almost all groups. Admixture in all regions except North Western Europe involved the influx of genetic material from outside of West Eurasia, which we date to specific time periods. Within Northern, Western, and Central Europe, admixture tended to occur between local groups during the period 300 to 1200CE. Comparisons of the genetic profiles of West Eurasians before and after admixture show that population movements within the last 1500 years are likely to have maintained differentiation amongst groups. Our analysis provides a timeline of the gene flow events that have generated the contemporary genetic landscape of West Eurasia. 20 individuals from Croatia included as part of an analysis of admixture in West Eurasia