Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed.
Project description:microRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. Here, we perform a comprehensive analysis of miRNAs in the zoonotic parasite E. canadensis G7, one of the causative agents of the neglected disease cystic echinococcosis. Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. As a result, we found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed significant regulated miRNAs between life cycle stages of E. canadensis G7. We confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism. This study will provide valuable information for better understanding the complex biology of this parasite and could help to find new potential targets for therapy and/or diagnosis.
Project description:microRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. Here, we perform a comprehensive analysis of miRNAs in the zoonotic parasite E. canadensis G7, one of the causative agents of the neglected disease cystic echinococcosis. Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. As a result, we found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed significant regulated miRNAs between life cycle stages of E. canadensis G7. We confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism. This study will provide valuable information for better understanding the complex biology of this parasite and could help to find new potential targets for therapy and/or diagnosis. Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. For each sample type, two libraries were constructed from two independent samples in order to have biological replicates.
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed. A two chip study using total RNA recovered from wild-type and motile strains of Sphingomonas. sp A1 grown in 0.5% alginate medium.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources.