Project description:Clinical utility of metagenomic next-generation sequencing for pathogen detection and diagnosis in lower respiratory tract infections
Project description:This series includes 278 microarrays used to detect respiratory viruses in a set of nasopharyngeal lavage specimens from children with respiratory tract infections Objective: To assess the utility of a pan-viral DNA microarray platform (Virochip) in the detection of viruses associated with pediatric respiratory tract infections. Study Design: The Virochip was compared to conventional clinical direct fluorescent antibody (DFA) and PCR-based testing for the detection of respiratory viruses in 278 consecutive nasopharyngeal aspirate samples from 222 children. Results: The Virochip was superior in performance to DFA, showing a 19% increase in the detection of 7 respiratory viruses included in standard DFA panels, and was similar to virus-specific PCR (sensitivity 85-90%, specificity 99%, PPV 94-96%, NPV 97-98%) in the detection of respiratory syncytial virus, influenza A, and rhino-/enteroviruses. The Virochip also detected viruses not routinely tested for or missed by DFA and PCR, as well as double infections and infections in critically ill patients that DFA failed to detect. Conclusions: Given its favorable sensitivity and specificity profile and greatly expanded spectrum of detection, microarray-based viral testing holds promise for clinical diagnosis of pediatric respiratory tract infections. Keywords: viral detection The series includes 278 clinical specimens
Project description:Ureaplasma are widespread parasites colonizing the mucosal surface of the human urogenital tract, and it has been suspected as a causative agent of nongonococcal urethritis, pregnancy complications and prenatal infections. Ureaplasma may also cause central nervous system infections and affect the lower respiratory tract of newborn babies. However, Ureaplasma spp. have also been detected in the urogenital tracts of clinically healthy patients, and their role in the development of infections thus remains unclear. Like in other organisms, virulence of Ureaplasma is determined by the presence of virulence factors - adhesions, human IgA protease, phospholipase and urease. However, the existence of interrelationships between the presence of these genes in the Ureaplasma genome and the incidence of diseases in man has not been demonstrated. Difficulties in the elucidation of these interrelationships may arise from significant macro- (gene mutation, chromosomal rearrangements) and micro- (nucleotide polymorphism) genomic heterogeneity. It is possible that the combination of the variable strain-specific genes in Ureaplasma with generally known virulence factors determine the development of pathological processes on the mucosal surface of the human urogenital tract. In our research we used 10 clinical and 1 laboratory strain
Project description:This series includes 278 microarrays used to detect respiratory viruses in a set of nasopharyngeal lavage specimens from children with respiratory tract infections Objective: To assess the utility of a pan-viral DNA microarray platform (Virochip) in the detection of viruses associated with pediatric respiratory tract infections. Study Design: The Virochip was compared to conventional clinical direct fluorescent antibody (DFA) and PCR-based testing for the detection of respiratory viruses in 278 consecutive nasopharyngeal aspirate samples from 222 children. Results: The Virochip was superior in performance to DFA, showing a 19% increase in the detection of 7 respiratory viruses included in standard DFA panels, and was similar to virus-specific PCR (sensitivity 85-90%, specificity 99%, PPV 94-96%, NPV 97-98%) in the detection of respiratory syncytial virus, influenza A, and rhino-/enteroviruses. The Virochip also detected viruses not routinely tested for or missed by DFA and PCR, as well as double infections and infections in critically ill patients that DFA failed to detect. Conclusions: Given its favorable sensitivity and specificity profile and greatly expanded spectrum of detection, microarray-based viral testing holds promise for clinical diagnosis of pediatric respiratory tract infections. Keywords: viral detection
2008-07-09 | GSE10294 | GEO
Project description:Multicenter surveillance study of lower respiratory tract infections
Project description:The impact of viral infections, on host microbiota composition and dynamics is poorly understood. Influenza A viruses (IAV) are common respiratory pathogens causing acute infections. In this study, we show dynamic changes in respiratory and intestinal microbiota over the course of a sublethal IAV infection in a mouse model. Using a combination of 16S rRNA gene specific next generation sequencing and qPCR as well as culturing of bacterial organ content, we found body site specific and transient microbiota responses to influenza infection. In the lower respiratory tract, we observed only minor qualitative changes in microbiota composition. In the small intestine, IAV induced robust depletion of bacterial content, disruption of mucus layer integrity and higher levels of antimicrobial peptides in Paneth cells. By RNAseq approach, we tried to analyze changes in transcriptomics of lung, and small intestine on the day of maximum changes to dissect possible causal players leading to the phentype observed.