Project description:We seqeunced mRNA from the bacterial pathogen 'Candidatus Liberibacter solanacearum" during its association with the psyllid vector Bactericera cockerelli.
Project description:We sequenced mRNA from the bacterial pathogen 'Candidatus Liberibacter solanacearum" during its association with the psyllid vector Bactericera cockerelli.
Project description:We seqeunced mRNA from the bacterial pathogen 'Candidatus Liberibacter solanacearum" during its association with the psyllid vector Bactericera cockerelli. Total RNA was purified from psyllids, insect and bacterial rRNAs were depleted. PolyA RNA was purified using Dynabeads. PolyA purified RNA and depleted RNA were sequenced.
Project description:‘Candidatus Liberibacter solanacearum’ (Lso) has emerged as a major pathogen of crops worldwide. This bacterial pathogen is transmitted by Bactericera cockerelli, tomato psyllid, to solanaceous crops. In this study, the transcriptome profiles of Solanum lycopersicum exposed to B. cockerelli infestation and to Lso infection were evaluated at one, two and four weeks following colonization and/or infection. Plant transcriptional response to Lso-negative B. cockerelli was different than plant responses to Lso-positive B. cockerelli. The comparative transcriptomes of plant responses to Lso-negative B. cockerelli revealed the up-regulation of genes associated with plant defenses regardless of the time-point. In contrast, the plant general responses to Lso-positive B. cockerelli and Lso-infection were temporally different. Infected plants down-regulated defense genes at week one while delayed the up-regulation of the defense genes to week two and four, time points in which early signs of disease development were also detected in the transcriptional response. For example, infected plants up-regulated carbohydrate metabolism genes which could be linked to the disruption of sugar distribution usually associated with Lso infection. Also, infected plants down-regulated photosynthesis genes potentially resulting in plant chlorosis, another symptom associated with Lso infection. Overall, this study highlights that S. lycopersicum plants induced different sets of genes in response to different stages of B. cockerelli infestation and Lso infection. This is the first transcriptome study of tomato responses to B. cockerelli and Lso, a first step in the direction of finding plant defense genes to enhance plant resistance.
Project description:The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’ (or Lso). Lso disease symptom severity is dependent on Lso haplotype: tomato plants infected with Lso haplotype B experience more severe symptoms and higher mortality compared to plants infected with Lso haplotype A. By characterizing the molecular differences in the tomato plant’s responses to Lso haplotypes, the key components of LsoB virulence can be identified and, thus, targeted for disease mitigation strategies. To characterize the tomato plant genes putatively involved in the differential immune responses to Lso haplotypes A and B, RNA was extracted from tomato ‘Moneymaker’ leaves three weeks after psyllid infestation. Gene expression levels were compared between uninfected tomato plants (i.e., controls and plants infested with Lso-free psyllids) and infected plants (i.e., plants infested with psyllids infected with either Lso haplotype A or Lso haplotype B). Furthermore, expression levels were compared between plants infected with Lso haplotype A and plants infected with Lso haplotype B. A whole transcriptome analysis identified 578 differentially expressed genes (DEGs) between uninfected and infected plants as well as 451 DEGs between LsoA- and LsoB-infected plants. These DEGs were primarily associated with plant defense against abiotic and biotic stressors, growth/development, plant primary metabolism, transport and signaling, and transcription/translation. These gene expression changes suggested that tomato plants traded off plant growth and homeostasis for improved defense against pathogens, especially when infected with LsoB. Consistent with these results, tomato plant growth experiments determined that LsoB-infected plants were significantly stunted and had impaired negative geotropism. However, it appeared that the defense responses mounted by tomatoes were insufficient for overcoming the disease symptoms and mortality caused by LsoB infection, while these defenses could compensate for LsoA infection. The transcriptomic analysis and growth experiments demonstrated that Lso-infected tomato plants underwent gene expression changes related to abiotic and biotic stressors, impaired growth/development, impaired plant primary metabolism, impaired transport and signaling transduction, and impaired transcription/translation. Furthermore, the transcriptomic analysis also showed that LsoB-infected plants, relative to LsoA-infected, experienced more severe stunting, had improved responses to some stressors and impaired responses to others, had poorer transport and signaling transduction, and had impaired carbohydrate synthesis and photosynthesis.
Project description:HLB is suggested to be caused by the phloem-limited fastidious prokaryotic α-proteobacterium “Candidatus Liberibacter spp.” Previous studies focused on the proteome and transcriptome analyses of citrus 5 to 35-week-after “Ca. L. spp.” inoculation. In this study, gene expression profiles was analyzed using mandarin of Citrus reticulate Blanco cv. jiaogan leaves after 2-year infection with “Ca. L. asiaticus”. The Affymetrix GeneChip® citrus genome were applied to study the molecular pathways mediated by “Ca. L. asiaticus” inoculated 3-year-old jiaogan seedlings. Each of them was graft-inoculated with one sweet orange scions with or without “Ca. L. asiaticus” in Dectember, 2009. RNA samples from three mandarin trees infected with 'Candidatus Liberibacter asiaticus' and three uninfected trees were used for affymatrix genochip
Project description:This study evaluated the transcriptional reprogramming of a susceptible genotype (Pera sweet orange) challenged with the pathogenic bacteria Candidatus Liberibacter americanus (CaLam), using a customized 385K microarray containing about 32,000 unigene transcripts. For the microarray experiment were used symptomatic leaves from two Pera sweet orange plants inoculated with either bark or bud pieces infected with Candidatus Liberibacter americanus and two non-infected control plants.
Project description:Purpose: The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of tomato (Solanum lycopersicum) and potato (S. tuberosum) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’. Plants undergo physiological, transcriptomic, or epigenetic changes in order to mount a stronger, faster response against secondary challenges by previously perceived threats. This is called defense ‘priming’ and it likely has an impact on vectored disease transmission. Currently, it is still unknown whether or not psyllid infestation has any lasting consequences for tomato gene expression or defense. To characterize the genes potentially involved in tomato priming against psyllids, RNA was extracted from psyllid-primed and uninfested tomato (Moneymaker) leaves three weeks after infestation. Methods: RNA was extracted and sequenced from plants three weeks after psyllid infestation. Plants were either left alone (Control or C) or infested with psyllids (Primed or J1). Libraries were developed using the TruSeq RNA Library Prep Kit v2. Sequencing was performed on the Illumina PE HiSeq 2500 v4 platform. Processed sequences were uploaded to the CyVerse Discovery Environment computational infrastructure where bioinformatic analysis was performed using the Tuxedo Suite 2 workflow. Results: Illumina HiSeq sequencing of tomato cDNA libraries produced 132,428,443 total reads that met FastQC quality control criteria. 94.6% of all reads mapped to vSL3.0 of the S. lycopersicum genome. CuffDiff2 analysis identified 310 differentially expressed genes (DEGs) between control and psyllid-primed plants (q-value <0.01). Conclusions: A week-long infestation by a small number of B. cockerelli had lasting consequences for gene expression in tomato plants. Homologs of the DEGs were associated with 1) defense against abiotic and biotic stress, 2) growth and development, and 3) components of plant biology indirectly involved in plant growth and development such as homeostasis, transcription/translation, and molecular transport.