Project description:Background: Malaria is a public health problem in parts of Thailand, where Plasmodium falciparum and Plasmodium vivax are the main causes of infection. In the northwestern border province of Tak parasite prevalence is now estimated to be less than 1% by microscopy. Nonetheless, microscopy is insensitive at low-level parasitaemia. The objective of this study was to assess the current epidemiology of falciparum and vivax malaria in Tak using molecular methods to detect exposure to and infection with parasites; in particular, the prevalence of asymptomatic infections and infections with submicroscopic parasite levels. Methods: Three-hundred microlitres of whole blood from finger-prick were collected into capillary tubes from residents of a sentinel village and from patients at a malaria clinic. Pelleted cellular fractions were screened by quantitative PCR to determine parasite prevalence, while plasma was probed on a protein microarray displaying hundreds of P. falciparum and P. vivax proteins to obtain antibody response profiles in those individuals. Results: Of 219 samples from the village, qPCR detected 25 (11.4%) Plasmodium sp. infections, of which 92% were asymptomatic and 100% were submicroscopic. Of 61 samples from the clinic patients, 27 (44.3%) were positive by qPCR, of which 25.9% had submicroscopic parasite levels. Cryptic mixed infections, misdiagnosed as single-species infections by microscopy, were found in 7 (25.9%) malaria patients. All sample donors, parasitaemic and non-parasitaemic alike, had serological evidence of parasite exposure, with 100% seropositivity to at least 54 antigens. Antigens significantly associated with asymptomatic infections were P. falciparum MSP2, DnaJ protein, putative E1E2 ATPase, and three others.
2014-06-22 | GSE55265 | GEO
Project description:Eggshell microbiome of a brood parasite
Project description:The Varroa mite represents the main threat of honey bees (Apis mellifera). Bees from some colonies can limit the proliferation of this parasite by detecting and removing parasitized brood, such behavior is defined as Varroa sensitive Hygiene (VSH). This is an important issue for selecting colonies that can survive Varroa outbreaks. We therefore study the molecular meachnisms underlying this behavior by comparing the antennae transcriptomic profile of VSH and non-VSH bees. Those profiles were further compared to to the profiles of nurses and forager profiles involved in brood care and food collection, respectively.
Project description:We analyzed samples from fourteen deaf individuals (Affected 1 through 14), fifteen hearing maternally related family members (Unaffected 1-15), six marry-in controls (Controls 1-6) from extended pedigree from Arab-Israeli village, and nine individuals from another Arab-Israeli village (Controls 7-15). All affected and unaffected maternally-related individuals carry homoplasmic mutation in the 12S rRNA gene of the mitochondrial DNA, associated with both non-syndromic and aminoglycosides-induced deafness. Keywords: Comparison of genome-wide expression in cell lines of maternally-related individuals with mitochondrial mutation and controls carrying wild-type mitochondrial chromosome.
Project description:The mechanisms by which DNA alleles contribute to disease risk, drug response, and other human phenotypes are highly context-specific, varying across cell types and under different conditions. Human induced pluripotent stem cells (hiPSCs) are uniquely suited to study these context-dependent effects, but to do so requires cell lines from hundreds or thousands of individuals. Village cultures, where multiple hiPSC lines are cultured and differentiated in a single dish, provide an elegant solution for scaling hiPSC experiments to the necessary sample sizes required for population-scale studies. Here, we show the utility of village models, demonstrating how cells can be assigned back to a donor line using single-cell sequencing and addressing whether line-specific signalling alters the transcriptional profiles of companion lines in a village. We generated single-cell RNA sequence data from hiPSC lines cultured independently (uni-culture) and in villages at three independent sites. Using a mixed linear model framework, we estimate that the proportion of transcriptional variation across cells is predominantly due to donor effects, with minimal evidence of variation due to culturing in a village system. We demonstrate that the genetic, epigenetic or hiPSC line-specific effects explain a large percentage of gene expression variation for many genes, not the village status. This is reiterated by replication of previously identified genetic effects. Finally, we demonstrate consistency in the landscape of cell states between uni- and village-culture systems. We demonstrate that village methods can effectively detect hiPSC line-specific effects, including sensitive dynamics of cell states.
Project description:The great tit is a widely studied passerine bird species in ecology that, in the past decades, has provided important insights into speciation, phenology, behavior and microevolution. After completion of the great tit genome sequence, a customized high density 650k SNP array was developed enabling more detailed genomic studies in this species.