Project description:Aspergillus flavus and A. parasiticus are two of the most important aflatoxin-producing species that contaminate agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here, we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O-methylsterigmatocystin, but not CPA. Only four out of forty-five attempted interspecific crosses between compatible mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were isolated and were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of putative allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important species.
Project description:Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. In order to better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. A. flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed seventy seven genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis. Keywords: Aflatoxin, Aspergillus, flavus, Amnio Acids, Tryptophan
Project description:To better understand the effect of temperature on mycotoxin biosynthesis, RNA-Seq technology was used to profile the Aspergillus flavus transcriptome under different temperature conditions. This approachallowed us to quantify transcript abundance for over 80% of fungal genes including 1,153 genes that were differentially expressed at 30°C and 37°C. Wleven of the 55 secondary metabolite clusters were up-regulated at the lower temperature, including aflatoxin biosynthesis genes, which were among the most highly up-expressed genes. On average, transcript abundance for the 30 aflatoxin biosynthesis genes was 3,300 times greater at 30°C as compared to 37°C. The results are consistent with the view that high temperature negatively affects aflatoxin production by turning down transcription of the two key transcriptional regulators, aflR and aflS. Subtle changes in the expression levels of aflS to aflR appear to control transcription activation of the aflatoxin cluster.
Project description:To better understand the effect of temperature on mycotoxin biosynthesis, RNA-Seq technology was used to profile the Aspergillus flavus transcriptome under different temperature conditions. This approachallowed us to quantify transcript abundance for over 80% of fungal genes including 1,153 genes that were differentially expressed at 30M-BM-0C and 37M-BM-0C. Wleven of the 55 secondary metabolite clusters were up-regulated at the lower temperature, including aflatoxin biosynthesis genes, which were among the most highly up-expressed genes. On average, transcript abundance for the 30 aflatoxin biosynthesis genes was 3,300 times greater at 30M-BM-0C as compared to 37M-BM-0C. The results are consistent with the view that high temperature negatively affects aflatoxin production by turning down transcription of the two key transcriptional regulators, aflR and aflS. Subtle changes in the expression levels of aflS to aflR appear to control transcription activation of the aflatoxin cluster. 2 samples examined: from the fungus grown at 30M-BM-0C and 37M-BM-0C
Project description:RNA-seq was used to compare differential gene expressions for Aspergillus flavus wild type strain and ASPES transcription factor deletion strains.The goals of this study are to explore the aflatoxin regulation pathway in A. flavus.
Project description:Aflatoxins are carcinogenic fungal secondary metabolites. Levels of aflatoxins in agricultural commodities are stringently regulated by many countries. A cluster of genes is responsible for aflatoxin biosynthesis by Aspergillus flavus and other closely related species. Expression of the clustered aflatoxin genes is governed by a complex network of regulatory mechanisms. To better understand the molecular events that are associated with aflatoxin production, transcription profiling by microarray analyses which compared three independent aflatoxigenic A. flavus strains to individual isogenic progenies that no longer produced aflatoxins after serial transfers was carried out. Twenty-two significantly differentially expressed features were identified. After physical mapping using the A. oryzae genome sequence as the reference, the number of unique genes was reduced to 16. Compared to the parental strains, changes in the aflatoxin gene expression levels in the progenies were not significant, which suggests that the inability to produce aflatoxins is not caused by decreased expression. The only gene showing higher expression levels in the progenies is homologous to glutathione S-transferease genes. Overexpression of this gene, named hcc, at six- to nine-fold in an aflatoxigenic A. flavus did not cause discernible changes in colony morphology or aflatoxin production. Loss of aflatoxin production after serial transfers may not result from a single event but caused by multiple factors. Keywords: Compartiave hybridization toxigenic and atoxigenic lines of Aspergillus
Project description:Aspergillus flavus is one of the major fungal molds that colonize peanut in the field and during storage. The impact to human and animal health and to economy in agriculture and commerce are significant since this mold produces the most potent natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect to inhibit aflatoxin formation through down-regulating aflatoxin pathway gene expression in A. flavus as demonstrated by genechip analysis in liquid medium and peanuts. The results showed that aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98%) inhibited by B. megaterium. The expression of many of the aflatoxin biosynthetic genes in the fungus was confirmed to be turned down. Some of the target genes down-regulated by B. megaterium within the whole genome and within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX) were identified. These target genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was found to be significantly down-regulated.
Project description:Aflatoxins are carcinogenic fungal secondary metabolites. Levels of aflatoxins in agricultural commodities are stringently regulated by many countries. A cluster of genes is responsible for aflatoxin biosynthesis by Aspergillus flavus and other closely related species. Expression of the clustered aflatoxin genes is governed by a complex network of regulatory mechanisms. To better understand the molecular events that are associated with aflatoxin production, transcription profiling by microarray analyses which compared three independent aflatoxigenic A. flavus strains to individual isogenic progenies that no longer produced aflatoxins after serial transfers was carried out. Twenty-two significantly differentially expressed features were identified. After physical mapping using the A. oryzae genome sequence as the reference, the number of unique genes was reduced to 16. Compared to the parental strains, changes in the aflatoxin gene expression levels in the progenies were not significant, which suggests that the inability to produce aflatoxins is not caused by decreased expression. The only gene showing higher expression levels in the progenies is homologous to glutathione S-transferease genes. Overexpression of this gene, named hcc, at six- to nine-fold in an aflatoxigenic A. flavus did not cause discernible changes in colony morphology or aflatoxin production. Loss of aflatoxin production after serial transfers may not result from a single event but caused by multiple factors. Keywords: Compartiave hybridization toxigenic and atoxigenic lines of Aspergillus Aspergillus flavus NRRL 29459, NRRL 29474, and NRRL 29490 are aflatoxigenic strains originated from soil collection in a peanut field (Terrell Co., Georgia, USA). Strains 459B-20-2, 474A-20, and 499A-20 were nonaflatoxigenic isolates obtained after 20 serial transfers of the parental strains on potato dextrose agar slants (Horn and Dorner 2002). Comparsions in each experiment consisted of one aflatoxigenic parental strain and one nonaflatoxigenic progeny, compared after 48- or 72-hr growth. Each comparison was repeated with duplicate dye-flip.
Project description:Objective: Aspergillus flavus aflR, a gene encoding a Zn(II)2Cys6 DNA-binding domain, is an important transcriptional regulator of the aflatoxin biosynthesis gene cluster. Our previous results of GO analysis for the binding sites of AflR in A. flavus suggest that AflR may play an integrative regulatory role. This study aimed to investigate the integrative function of the aflR gene in A. flavus. Design: In this study, we used Aspergillus flavus NRRL3357 as a wild-type strain (WT) and constructed a knockout strain of A. flavus ΔaflR by homologous recombination. Based on the transcriptomics technology, we investigated the metabolic effects of aflR gene on growth, development and toxin synthesis of A. flavus, and discussed the overall regulation mechanism of aflR gene on A. flavus at the transcriptional level. Results: The disruption of aflR severely affected the aflatoxin biosynthetic pathway, resulting in a significant decrease in aflatoxin production. In addition, disrupted strains of the aflR gene produced relatively sparse conidia and a very small number of sclerotia. However, the biosynthesis of cyclopiazonic acid (CPA) was not affected by aflR gene disruption. Transcriptomic analysis of the ΔaflR strain grown on potato dextrose agar (PDA) plates at 0 h, 24 h, and 72 h showed that expression of clustering genes involved in the biosynthesis of aflatoxin was significantly down-regulated. Meanwhile, the ΔaflR strain showed significant expression differences in genes involved in spore germination, sclerotial development, and carbohydrate metabolism compared to the WT strain. Conclusions: The results showed that the A. flavus aflR gene also played a positive role in the growth and development of fungi.
Project description:Aspergillus flavus is a pathogen of corn, peanut, and other crops which produces carcinogenic mycotoxins known as aflatoxins. Previous studies have shown that drought stress results in exacerbated aflatoxin production. Drought-associated oxidative stress caused by reactive oxygen species (ROS) is suspected to contribute to increased aflatoxin production during infection. Here, the responses of field isolates of A. flavus with varying degrees of aflatoxin production capability to H2O2-derived oxidative stress were examined using iTRAQ proteomics. Three isolates: AF13 (highly toxigenic), NRRL3357 (moderately toxigenic), and K54A (atoxigenic), were cultures in aflatoxin conducive yeast extract-sucrose (YES) medium amended with 0, 10, or 20/25mM of H2O2. Identified differentially expressed proteins were used for functional prediction, cellular localization, and pathway analyses to identify molecular mechanisms involved in A. flavus oxidative stress responses relative to aflatoxin production capability. Correlative analyses with previously obtained transcriptome data for the same isolates under the same experimental conditions was also performed with a low degree of correlation (r = 0.1114) observed between the protein and transcript data suggesting possible post-transcriptional regulation of oxidative stress responses. The identified stress responsive mechanisms provide a basis of investigating novel approaches of enhancing host resistance against aflatoxin contamination.