Project description:A global set of clinical and environmental strains of the halotolerant black yeast-like fungus Hortaea werneckii are analyzed by multilocus sequencing and AFLP, and physiological parameters are determined. Partial translation elongation factor 1-α proves to be suitable for typing because of the presence/absence of introns and also the presence of several SNPs. Local clonal expansion could be established by a combination of molecular methods, while the population from the Mediterranean Sea water also responds differently to combined temperature and salt stress. The species comprises molecular populations, which in part also differ physiologically allowing further diversification, but clinical strains did not deviate significantly from their environmental counterparts.
Project description:Tinea nigra is a superficial mycosis caused by Hortaea werneckii. It is an infrequent asymptomatic infection that affects human palms and soles, and is mostly observed in tropical countries. We evaluate retrospectively twenty-two confirmed cases of tinea nigra from a total of eleven yr (1997-2007) and discuss the epidemiology, clinical features and treatment of this disease. In twelve cases, adults were involved, in 10, children. In nineteen cases the disorder was located on palms of hands and in three on soles of feet. In all cases, the obtained isolates were morphologically identified as Hortaea werneckii and the identification of ten isolates was retrospectively confirmed with the help of sequences of the internal transcribed spacer regions of the ribosomal DNA. The patients received topical treatment with Whitfield ointment, ketoconazole, bifonazole, or terbinafine. Treatment with keratolytic agents and topical antifungals was effective.
Project description:Hortaea werneckii, an extreme halotolerant black yeast in the order of Capnodiales, was recently isolated from different stations and depths in the Mediterranean Sea, where it was shown to be the dominant fungal species. In order to explore the genome characteristics of these Mediterranean isolates, we carried out a de-novo sequencing of the genome of one strain isolated at a depth of 3400 m (MC873) and a re-sequencing of one strain taken from a depth of 2500 m (MC848), whose genome was previously sequenced but was highly fragmented. A comparative phylogenomic analysis with other published H. werneckii genomes was also carried out to investigate the evolution of the strains from the deep sea in this environment. A high level of genome completeness was obtained for both genomes, for which genome duplication and an extensive level of heterozygosity (~4.6%) were observed, supporting the recent hypothesis that a genome duplication caused by intraspecific hybridization occurred in most H. werneckii strains. Phylogenetic analyses showed environmental and/or geographical specificity, suggesting a possible evolutionary adaptation of marine H. werneckii strains to the deep sea environment. We release high-quality genome assemblies from marine H. werneckii strains, which provides additional data for further genomics analysis, including niche adaptation, fitness and evolution studies.