Project description:In this study, samples of 16 dairy cows from a MAP infected farm were used. Serum, milk and fecal samples were collected. Categorizing these cows into two groups based on their MAP infection status different standard methods for detection MAP were applied. Healthy controls showed no positive results in enzyme-linked immunosorbent assay (ELISA) with serum and milk samples (cattletype MAP Ab, Qiagen, Hilden, Germany; In-direct, IDVet, Grabels, France) and after cultivation of fecal samples on commercial Her-rold´s Egg Yolk Agars (HEYM agar, Becton Dickinson, Heidelberg, Germany) for 12 weeks. Cows with positive results were grouped into MAP infected cows. Specifically, for mass spectrometry analysis serum of seven MAP infected cows and seven healthy controls were used. All animals were from the same farm and were kept under the same environmental conditions. For additional mass spectrometry analysis with a further control group sam-ples of 21 dairy cows from an uninfected farm were examined. All cattle from this farm showed negative results in ELISA with serum and milk samples. Additionally, there was never a positive result in regularly tested fecal samples and sock swab samples of this farm. For verification of differential CTSS expression in Western blot analysis five dairy cows from another infected farm were consultedincluded. MAP status of these cows was analyzed by cultivation of fecal samples on HEYM agar for 12 weeks and ELISA with se-rum samples. In detail, two cattle were categorized into healthy controls and three cattle into MAP infected cows. Withdrawal of bovine venous whole blood and experi-mental protocols were approved by the local authority, Government of Upper Bavaria, permit no. ROB-55.2-2532.Vet_03-17-106.
Project description:Five healthy Laoshan dairy goats (four years old, third lactation) from Qingdao Laoshan dairy goat primary farm (Shandong Province, China) were used. The mammary gland samples were collected surgically after general anaesthesia using Xylazine Hydrochloride injection solution (Huamu Animal Health Products Co., Ltd. China) at corresponding lactation stage, including early, peak and late lactations.
Project description:The knowledge of the genetic architecture behind feed efficiency would allow to breed more efficient animals maximizing farm profitability and reducing the environmental impact of animal production. This study analyzes high throughput gene expression data from milk samples to determine key genes and biological mechanisms associated to feed efficiency in dairy sheep.A detailed description of the sheep management practices and calculations for the feed efficiency index (FEI) are detailed in 10.3168/jds.2020-19061. For these analyses, we selected animals with divergent FEI values from a group of 40 lactating Assaf ewes. RNA-Seq was performed on milk somatic cell samples from 8 high feed efficiency sheep (H-FE), FEI = −0.29 (SD = 0.23), RFI = −0.16 (SD = 0.25), and 8 low feed efficiency sheep (L-FE), FEI = 0.81 (SD = 0.24), RFI = 0.19 (SD = 0.24)).
Project description:Background: Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. Objective: We hypothesized that children raised in farm environments have a lower incidence of viral illnesses over the first two years of life than non-farm children. We also analyzed between farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. Methods: The Wisconsin Infant Study Cohort (WISC) birth cohort enrolled farm and non-farm pregnant women from central Wisconsin. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression at age two years was compared to farm exposure and respiratory illness history. Results: There was a higher rate of respiratory illnesses in the non-farm vs. farm group (rate ratio 0.82 [0.69,0.97], p=0.020), but no significant differences in wheezing illnesses. There was a stepwise reduction in rates of respiratory illnesses in children exposed at least weekly to 0, 1, or ≥2 animals (p=0.006). In analyzing nasal cell gene expression, farm exposures and preceding respiratory illnesses were positively related to gene signatures for mononuclear cells and innate and antimicrobial responses. Conclusions: Children exposed to farms and farm animals had lower rates of respiratory illnesses over the first two years of life. Both farm exposures and preceding respiratory illnesses were associated with increased innate immune responses, suggesting that these exposures stimulate mucosal immune responses to reduce subsequent illness frequency.