Project description:Understanding molecular mechanism associated with high altitude exposure during acclimatization/adaptation/maladaptation. Data reveals specific components of the complex molecular circuitry underlying high altitude pulmonary edema. Individualized outcome prediction were constructed through expression profiling of 39400 genes in sea level sojourners who were acclimatized to high altitude and grouped as controls (n=14), high altitude natives (n=14) and individuals who developed high altitude pulmonary edema within 48-72 hours after air induction to high altitude (n=17).
Project description:Generation of transgenic cell lines is limited by inefficient gene editing requiring genotypic screening of hundreds to thousands of colonies to isolate correctly gene-edited cells. Here, we describe a novel method called CRISPRa On-Target Editing Retrieval (CRaTER) that enriches for cells with on-target knock-in of a promoterless cDNA-fluorescent reporter transgene by transiently overexpressing the targeted endogenous genetic locus and sorting for fluorescent cells. We use CRaTER to enrich for rare cells with heterozygous, biallelic-editing of the endogenous, transcriptionally-inactive MYH7 locus in human induced pluripotent stem cells (hiPSC), resulting in a 9-fold enrichment compared to antibiotics selection alone. We leveraged CRaTER to enrich for heterozygous knock-in of a library of single nucleotide variants (SNV) in MYH7, a gene encoding for sarcomeric MHC-β wherein autosomal dominant missense mutations cause cardiac and skeletal myopathies. CRaTER enabled 90% enrichment of heterozygous, biallelically-edited hiPSCs – a 38.6-fold enrichment compared to antibiotics selection alone – to generate 113 SNVs comprising 78 missense variants in MYH7. hiPSCs that have undergone CRaTER enrichment can differentiate to cardiomyocytes and exhibit expected localization and expression of MHC-β fusion proteins. Together, CRaTER substantially reduces the screening required for isolation of gene-edited cells, enabling the generation of transgenic cell lines at unprecedented scale.
Project description:Altitude acclimatization is the physiological process to restore oxygen delivery to the tissues and promote the oxygen application under high altitude hypoxia. High altitude illness could happen in individuals who did not get acclimatization. Unraveling the molecular underpinnings of altitude acclimatization would help people to understand the beneficial response of body to high altitude hypoxia and disturbed biological process in un-acclimatized individuals. Here, we measured physiological adjustments and circulating microRNAs (cmiRNAs) profiles of individuals exposed to high altitude to explore the altitude acclimatization in humans.
Project description:Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. However, a prolonged sojourn at high altitude results in an increase in EPO levels followed by a decrease, although erythropoiesis remains elevated at a stable level. The role of hypoxia and related EPO adjustments are not fully understood and contributed to the formulation of the theory of neocytolysis. In this study, we aimed to exclusively evaluate the role of oxygen on erythropoiesis comparing in vitro erythroid differentiation performed at atmospheric oxygen, with a lower oxygen concentration (3% O2) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in a different erythroid development, suggesting no retention of high altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at 3% oxygen, displaying a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation to the concept of neocytolysis.