Project description:Dysbiotic configurations of the human gut microbiota have been linked with colorectal cancer (CRC). Human small non-coding RNAs are also implicated in CRC and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis but their role is less explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens of patients with CRC, or adenomas, and healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We reported a considerable overlap and correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. Furthermore, we identified a combined predictive signature composed by 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC from healthy and adenoma samples (AUC= 0.87). In summary we reported evidence that host-microbiome dysbiosis in CRC can be observed also by altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more accurate tools for diagnostic purposes.
Project description:Epithelial Ovarian Cancer (EOC) is the leading cause of gynecologic cancer death. Despite many patients achieving remission with first-line therapy, up to 80% of patients will recur and require additional treatment. Retrospective clinical analysis of OC patients indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. We assessed whether antibiotic (ABX) therapy would impact growth of EOC and sensitivity to cisplatin in murine models. Immune competent or compromised mice were given control or ABX containing water (metronidazole, ampicillin, vancomycin, and neomycin) before being intraperitoneally injected with murine EOC cells. Stool was collected to confirm microbiome disruption and tumors were monitored, and cisplatin therapy was administered weekly until endpoint. EOC tumor-bearing mice demonstrate accelerated tumor growth and resistance to cisplatin therapy in ABX treated compared with nonABX treatment. Stool analysis indicated most gut microbial species were disrupted by ABX treatment except for ABX resistant bacteria. To test for role of the gut microbiome, cecal microbiome transplants (CMTs) of microbiota derived from ABX or nonABX treated mice were used to recolonize the microbiome of ABX treated mice. nonABX cecal microbiome was sufficient to ameliorate the chemoresistance and survival of ABX treated mice indicative of a gut derived tumor suppressor. Mechanistically, tumors from ABX treated compared to nonABX treated mice contained a high frequency of cancer stem cells that were augmented by cisplatin. These studies indicate an intact microbiome provides a gut derived tumor suppressor and maintains chemosensitivity that is disrupted by ABX treatment.
Project description:DNA methylation is an epigenetic mark that is altered in cancer and aging tissues. The effects of extrinsic factors on DNA methylation remain incompletely understood. Microbial dysbiosis is a hallmark of colorectal cancer, and infections have been linked to aberrant DNA methylation in cancers of the GI tract. To determine the microbiota’s impact on DNA methylation, we studied the DNA methylation of colorectal mucosa in germ-free (GF, no microbiome) and specific pathogen free (SPF, controlled microbiome) mice, as well as in interleukin 10 KO mice (Il10-/-) which are prone to inflammation and tumorigenesis in the presence of a microbiome. We compared DNA methylation changes to those seen in aging, and after exposure to the colon carcinogen azoxymethane (AOM). DNA methylation changes associated with aging were accelerated in the Il10-/- /SPF mice. By contrast, AOM induced profound hypomethylation that was distinct from the effects of aging or of the microbiome. CpG sites modified by the microbiome were over-represented among DNA methylation changes in colorectal cancer. Thus, the microbiome affects the DNA methylome of colorectal mucosa in patterns reminiscent of what is observed in colorectal cancer.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy that is linked to high-risk Human papillomavirus (HPV) infection. It is often preceded by precursor lesions like Low-Grade Squamous Intraepithelial Lesions (LGSIL) and High-Grade Squamous Intraepithelial Lesions (HGSIL). The incidence of ASCC varies across populations, with heightened risk in HIV-positive individuals. In a previous study, we characterized the anal microbiome in high-risk HIV-exposed MSM and TGW subjects. We revealed oncogenic viromes and pertinent bacterial species associated with anal SILs. Our current investigation aimed to delineate transcriptomic and metatranscriptomic changes during the progression from precancerous lesions to ASCC. We collected 70 anal tissue samples across various lesion stages (LGSIL, HGSIL, and ASCC). Our metatranscriptomic analysis revealed that Fusobacterium nucleatum, F. gonidiaformans, Bacteroides fragilis, Campylobacter ureolyticus, and Cribacterium bergeronii were more prevalent in ASCC than in precancerous lesions. These bacterial species contributed with gene encoding enzymes (e.g.: Acca, glyQ, eno, pgk and por) and oncoproteins (FadA and dnaK) revealing potential new markers for diagnosis or treatment approaches. Our unsupervised transcriptome analysis identified two distinct sample clusters based on histological diagnosis, immune infiltrate, HIV and HPV status, and pathway activities such as immune activation, cell cycle, and antiviral signaling that recapitulate the natural history of anal cancer progression. Mutations were observed affecting KMT2C (30%), PIK3CA (21%), EP300 (21%) and NOTCH1 (13%) cancer driver genes among ASCC but also in precancerous lesions. Our study provides insights into the molecular mechanisms governing anal cancer progression, offering valuable information that may help to stratify HGSIL cases with low- or high-risk progression to the malignant stages.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups
Project description:Pouchitis is a common complication for ulcerative colitis (UC) patients with ileal pouch-anal anastomosis (IPAA) surgery. Similarly to IBD, both innate host factors such as genetics, and environmental stimuli including the tissue-associated microbiome have been implicated in the pathogenesis. In this study, we make use of the IPAA model of inflammatory bowel disease (IBD) to carry out a study associating mucosal host gene expression with the microbiome and corresponding clinical outcomes.