Project description:Effects of diets high in animal or plant protein on oxidative stress in individuals with type 2 diabetes: a randomized clinical trial
Project description:Transcriptomic profiling of metastatic NSCLC cancer patients from tumor tissue and organ-matched normal tissue as reference which were taken as part of the WINTHER clinical trial. The organ-matched normal tissues were used in order to eliminate host gene expression variability while discarding most genetic variability between individuals. The goal was to trial was to navigate patients to therapy on the basis of fresh biopsy-derived DNA sequencing or RNA expression
Project description:BackgroundVaginal yeast is frequently found with Lactobacillus-dominant microbiota. The relationship between vaginal yeast and other bacteria has not been well characterized.MethodsThese analyses utilized data from the Preventing Vaginal Infections trial. Relative abundance of vaginal bacteria from 16S ribosomal ribonucleic acid gene amplicon sequencing and quantities of 10 vaginal bacteria using taxon-directed polymerase chain reaction assays were compared at visits with and without detection of yeast on microscopy, culture, or both.ResultsHigher relative abundances of Megasphaera species type 1 (risk ratio [RR], 0.70; 95% confidence interval [CI], 0.52-0.95), Megasphaera species type 2 (RR, 0.81; 95% CI, 0.67-0.98), and Mageeibacillus indolicus (RR, 0.46; 95% CI, 0.25-0.83) were associated with lower risk of detecting yeast. In contrast, higher relative abundances of Bifidobacterium bifidum, Aerococcus christensenii, Lactobacillus mucosae, Streptococcus equinus/infantarius/lutentiensis, Prevotella bivia, Dialister propionicifaciens, and Lactobacillus crispatus/helveticus were associated with yeast detection. Taxon-directed assays confirmed that increasing quantities of both Megasphaera species and M indolicus were associated with lower risk of detecting yeast, whereas increasing quantities of L crispatus were associated with higher risk of detecting yeast.ConclusionsDespite an analysis that examined associations between multiple vaginal bacteria and the presence of yeast, only a small number of vaginal bacteria were strongly and significantly associated with the presence or absence of yeast.
Project description:Vaginal atrophy is a prevalent symptom in menopausal women, affecting over 50% of older women and patients with loss of ovarian function. The role of factors other than estrogen, such as the vaginal microbiota (VM), in the development of vaginal atrophy has not been fully explored. Therefore, we selected 8-week-old C57 mice with bilateral ovariectomy for experimentation. After four weeks of treatment, we observed that the vaginal epithelium of ovariectomized mice showed signs of atrophy. There were also significant differences in the structure and metabolites of VM. Vaginal transplantation of microbiota from ovary-intact mice significantly alleviated the vaginal atrophy of ovariectomized mice and altered the structure and metabolism of VM. These findings indicate that ovarian activity significantly affects the structure and metabolism of VM. VM of ovary-intact mice may promote vaginal health by upregulating the estrogen receptor alpha gene (ESR1, one-way ANOVA, F4, 25 = 17.76, P < 0.0001) in vaginal epithelial cells in ovariectomized mice, which in turn promotes cell proliferation (the number of vaginal epithelial cell layers, one-way ANOVA, F4, 25 = 28.04, P < 0.0001). Further studies are needed to investigate the interactions between VM and vaginal health. This finding can help develop new therapeutic strategies and interventions for patients suffering from vaginal atrophy.