Project description:Affymetrix single nucleotide polymorphism (SNP) array data were used to study genes that underlie human adaptation to climatic stress, with a focus on genetic changes that lead to long-term cold tolerance. Siberia provides the best opportunity to investigate the genetic mechanisms of cold resistance because of the long-term ancestry of indigenous populations in some of the coldest climates on earth. While much of northern Europe was under ice throughout the last glacial period, Siberia remained relatively ice free, and archaeological evidence suggests that people inhabited this region for more than 40,000 years. We gathered SNP data from ~200 individuals from 15 indigenous Siberian populations that inhabit a range of arctic climates and compare their patterns of genetic variation with those from other world populations from warmer climates.Particular attention is paid to regions containing genes that have been previously implicated in cold adaptation or that function in known pathways connected to energy metabolism or cold adapted phenotypes (e.g., those involved in basal metabolic rate and brown adipose tissue function).
Project description:Transcriptome profiling of leaves of perennial ryegrass genotype Veyo adapted to warmer climates, and ‘Falster’ adapted to cold climates, in response to low-temperature and drought stress conditions, were performed using RNA-Seq approach.
Project description:Different populations of the same species survive different environments through local adaptation. Temperature is one of the most important driving forces that could result in local adaptation. Here, we studied the influence of extreme low temperature on the survival of two genetically and geographically distinct populations of the free-living Caenorhabditis briggsae. We found that Caenorhabditis briggsae strains of temperate origin had a cold resistant phenotype, while those originating from a tropical climate had reduced survival after cold treatment. Using this phenotypic difference between geographically diverse populations as a model for how species adapt to their local environment, we then analyzed the transcriptional profiles of two Caenorhabditis briggsae strains of tropical and temperate origin to find genes that are involved in survival after extreme cold. In summary, the response to the extreme low temperature that clearly distinguishes the temperate and tropical Caenorhabditis briggsae strains could serve as an excellent example for studying local adaption of species that show genetic separation associated with their geographical distribution.
2021-09-09 | GSE171725 | GEO
Project description:Repeated shifts out of tropical climates preceded by whole genome duplication
| PRJNA1076884 | ENA
Project description:Stability and temperature stress in the EBPR bioprocess in tropical climates
Project description:Geographically distinct populations can adapt to the temperature conditions of their local environment, leading to temperature-dependent fitness differences between populations. Consistent with local adaptation, phylogeographically distinct Caenorhabditis briggsae nematodes show distinct fitness responses to temperature. The genetic mechanisms underlying local adaptation, however, remain unresolved. To investigate the potential role of small noncoding RNAs in genotype-specific responses to temperature, we quantified small RNA expression using high-throughput sequencing of C. briggsae nematodes from tropical and temperate strain genotypes reared under three temperature conditions (14˚, 20˚, 30˚C). Strains representing both tropical and temperate regions showed significantly lower expression of PIWI-interacting RNAs (piRNAs) at high temperatures, primarily mapping to a large ~7 Mb long piRNA cluster on chromosome IV. We also documented decreased expression of 22G-RNAs antisense to protein-coding genes and other genomic features at high rearing temperatures for the thermally-intolerant temperate strain genotype, but not for the tropical strain genotype. Reduced 22G-RNA expression was widespread along chromosomes and among feature types, indicative of a genome-wide response. Targets of the EGO-1/CSR-1 22G-RNA pathway were most strongly impacted compared to other 22G-RNA pathways, implicating the CSR-1 Argonaute and its RNA-dependent RNA polymerase EGO-1 in the genotype-dependent modulation of C. briggsae 22G-RNAs under chronic thermal stress. Our work suggests that gene regulation via small RNAs may be an important contributor to the evolution of local adaptations.
Project description:Enhancing climate resilience and sustainable production for animals in harsh environments are important goals for the livestock industry given the predicted impacts of climate change. Rapid adaptation to extreme climatic conditions has already been imposed on livestock species, including those exported after Columbus’ arrival in the Americas. We compared the methylomes of two Creole cattle breeds living in tropical environments with their putative Spanish ancestors to understand the epigenetic mechanisms underlying rapid adaptation of a domestic species to a new and more physiologically challenging environment. Reduced representation bisulfite sequencing (RRBS) was used to assess differences in methylation in Creole and Spanish samples and revealed 334 differentially methylated regions (DMRs) using high stringency parameters (p-value < 0.01, 4 CpGs within a distance of 200 bp, mean methylation difference > 25%), annotated to 263 unique features. Gene ontology analysis revealed candidates involved in tropical adaptation processes, including genes differentially hyper- or hypomethylated above 80% in Creole samples displaying biological functions related to immune response (IRF6, PRGDR, FAM19A5, PRLYRP1), nervous system (GBX2, NKX2-8, RPGR), energy management (BTD), heat resistance (CYB561) and skin and coat attributes (LGR6). Our results entail that major environmental changes imposed on Creole cattle has had an impact on their methylomes measurable today, which affects genes implicated in important pathways for adaptation. Although further work is needed, this first characterization of methylation patterns driven by profound environmental change provides a valuable pointer for the identification of biomarkers of resilience for improved cattle performance and welfare under predicted climatic change models.
2019-07-01 | GSE101796 | GEO
Project description:Natural annual transcriptome dynamics of Eucalyptus reveal seasonal adaptation of tropical/sub-tropical trees