Project description:Background and aimsAdansonia comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar.MethodsEleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment.Key resultsPopulation differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species.ConclusionsThe clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific microsatellite alleles and morphological characters, suggesting a potential role of hybridization in the recent history of diversification on Madagascar.
Project description:Baobab (Adansonia digitata L.) is an iconic tree of African savannahs. Its multipurpose character and nutritional composition of fruits and leaves offer high economic and social potential for local communities. There is an urgent need to characterize the genetic diversity of the Kenyan baobab populations in order to facilitate further conservation and domestication programmes. This study aims at documenting the genetic diversity and structure of baobab populations in southeastern Kenya. Leaf or bark samples were collected from 189 baobab trees in seven populations distributed in two geographical groups, i.e. four inland and three coastal populations. Nine microsatellite loci were used to assess genetic diversity. Overall, genetic diversity of the species was high and similarly distributed over the populations. Bayesian clustering and principal coordinate analysis congruently divided the populations into two distinct clusters, suggesting significant differences between inland and coastal populations. The genetic differentiation between coastal and inland populations suggests a limited possibility of gene flow between these populations. Further conservation and domestications studies should take into consideration thegeographical origin of trees and more attention should be paid to morphological characterization of fruits and leaves of the coastal and inland populations to understand the causes and the impact of the differentiation.
Project description:The baobab (Adansonia digitata L.) is a magnificent tree revered throughout Africa and is becoming recognized for its high nutritional and medicinal values. Despite numerous reports on the pharmacological potential, little is known about its chemical compositions. In this study, four hydroxycinnamic acid glycosides (1-4), six iridoid glycosides (5-10), and three phenylethanoid glycosides (11-13) were isolated from the dried baobab fruit pulp. Their structures were determined by means of spectroscopic analyses, including HRMS, 1H and 13C NMR and 2D experiments (COSY, HSQC, HMBC, and ROESY). All 13 compounds isolated were reported for the first time in the genus of Adansonia. An ultra high-performance liquid chromatography high-resolution accurate-mass mass spectrometry (UHPLC HRAM MS) method was used to conduct further investigation of the chemical compositions of the hydro-alcohol baobab fruit pulp extract. Hydroxycinnamic acid glycosides, iridoid glycosides and phenylethanoid glycosides were found to be the main components in baobab fruit pulp.
Project description:BackgroundThe dormancy of Adansonia digitata seeds is well known. For propagation purposes, plenty of germination tests were conducted, however, rarely taking the ecology of baobab into account. Our main goal, therefore, is to identify the decisive natural trigger for breaking the dormancy. We therefore performed 31 different tests and their influence on the germination rate (time to germination and proportion of seeds germinating).ResultsThe highest germination rates were reached in the heat tests while elephant's digestion seems to stimulate germination of Adansonia digitata only to a limited extent. The chalazal slit of the seed represents the primary site of water entry. Tannins concentrated in this region that are influenced by temperature play an important role for inhibiting the germination.ConclusionAs a result, the hypothesis is formulated that germination success strongly depends on heat, provoked by wildfires or prolonged exposition to the sun causing decomposition of tannins by high temperatures rather than on digestion.