Project description:Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding of the effect of waterlogging stress in barley, we carried out a genome-wide gene expression analysis in roots of Yerong and Deder2 barley genotypes under waterlogging and control (well-watered) conditions by RNA-Sequencing, using Illumina HiSeq™ 4000 platform.
Project description:We hypothesized that the genome segments of cultivated barley should show certain similarity with its ancestral wild barley. Instead of whole genome sequences, we employed RNA-Seq to investigated the genomic origin of modern cultivated barley using some representative wild barley genotypes from the Near East and Tibet, and representative world-wide selections of cultivated barley.
Project description:Effect of high grain protein locus on barley grain protein accumulation. Gene expression levels were analysed in Karl, a low grain protein variety with its near-isogenic line 10_11(has high grain protein locus, chromosome 6)using Barley1 22k affymetrix chip. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Aravind Jukanti. The equivalent experiment is BB53 at PLEXdb.]
Project description:NILs containing five parental lines, three wild barley genotypes ssp. spontaneum: HID 4 (A), Iraq; HID 64 (B), Turkey; and HID 369 (C), Israel, one ssp. agriocrithon: HID 382(D)) and cv. Morex (ssp. vulgare, USA). Purpose: Variant calling to identifie markers associated with a awn length QTL on the distal part of chromosome 7HL