Project description:Vestimentiferan tubeworms are representative inhabitants of deep-sea chemosynthetic ecosystems. The plume serves as the primary organ in these invertebrates without mouths and guts, facilitating direct metabolic exchange with their surrounding environments. In this study, we present a single-cell transcriptome atlas of Paraescarpia echinospica plume and this study is the initial single-cell transcriptome sequencing for the plume of the deep-sea tubeworm. We annotated six cell clusters including hemocytes, proliferative cells, muscle cells, epithelial cells, nerve1 cells, nerve2 cells and profiled genes involved in immunity and transport. This work will provide a foundation for further studies of tubeworm at the single-cell level.
Project description:Vestimentiferan tubeworms are representative inhabitants of deep-sea chemosynthetic ecosystems. The plume serves as the primary organ in these invertebrates without mouths and guts, facilitating direct metabolic exchange with their surrounding environments. In this study, we present a single-cell transcriptome atlas of Paraescarpia echinospica plume and this study is the initial single-cell transcriptome sequencing for the plume of the deep-sea tubeworm. We annotated six cell clusters including hemocytes, proliferative cells, muscle cells, epithelial cells, nerve1 cells, nerve2 cells and profiled genes involved in immunity and transport. This work will provide a foundation for further studies of tubeworm at the single-cell level.
Project description:We provide the genome-wide methylome surveys of three species of deep-sea polychaete worms using Oxford Nanopore data: the siboglinids Paraescarpia echinospica and Ridgeia piscesae, and the alvinellid Paralvinella palmiformis. We characterised 5mCpG methylation in order to test hypotheses about the putative role of DNA methylation in these species.