Project description:Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyopathy (through unknown mechanisms). Here, we report that genetic disruption of the cardiomyocyte clock results in chronic induction of the transcriptional repressor E4BP4. Importantly, E4BP4 deletion prevents age-onset cardiomyopathy following clock disruption. These studies also indicate that E4BP4 regulates both cardiac metabolism (eg, fatty acid oxidation) and electrophysiology (eg, QT interval). Collectively, these studies reveal that E4BP4 is a novel regulator of both cardiac physiology and pathophysiology.
Project description:Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyopathy (through unknown mechanisms). Here, we report that genetic disruption of the cardiomyocyte clock results in chronic induction of the transcriptional repressor E4BP4. Importantly, E4BP4 deletion prevents age-onset cardiomyopathy following clock disruption. These studies also indicate that E4BP4 regulates both cardiac metabolism (eg, fatty acid oxidation) and electrophysiology (eg, QT interval). Collectively, these studies reveal that E4BP4 is a novel regulator of both cardiac physiology and pathophysiology.
Project description:Circadian clocks are cell autonomous timekeeping mechanisms that govern critical biological processes. Regarding the heart, the cardiomyocyte circadian clock regulates a diverse array of processes, ranging from transcription and translation, to signaling, metabolism, electrophysiology, and contractility. The importance of this mechanism is underscored by observations that genetic disruption of the cardiomyocyte circadian clock in murine models leads to adverse cardiac remodeling, heart failure, and reduced lifespan. However, the precise molecular links between the cardiomyocyte circadian clock and cardiac physiology/pathology have not been characterized fully. Given that recent studies have highlighted that small RNA species (such as miRNAs) influence both cardiac physiology and pathology, we sought to determine the extent to which cardiomyocyte circadian clock disruption impacts cardiac small RNA species. Accordingly, hearts were collected from cardiomyocyte-specific Bmal1 knockout (CBK) and littermate control (CON) mice at distinct times of the day. Small RNA-seq revealed 47 differentially expressed miRNA species in CBK hearts (in the absence of significant time-of-day-dependent effects). Subsequent bioinformatic analyses predicted that differentially expressed miRNA species in CBK hearts potentially influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 were predicted to be targeted by the transcriptional repressors REV-ERB/ (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erb/ double knockout (CM-RevDKO) mouse hearts exhibited increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs were commonly repressed in both CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the BMAL1–REV-ERB/ axis in the heart leads to induction of a subset of miRNAs, whose predicted mRNA targets have established functions in biological processes such as metabolism and cellular signaling.
Project description:Disruption of the Circadian Clock within the Cardiomyocyte Influences Myocardial Contractie Function, Metabolism, and Gene Expression Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally-based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We therefore generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse, in order to test this hypothesis. At 12 weeks of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80mmHg plus 1 microM epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase versus the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, while cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure, and modest mitochondrial dysfunction, in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression. Keywords: Comparison of circadian oscillations in gene expression in hearts taken from wildtype and transgenic animals
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.