Project description:To investigate the effect of NAD+ metabolism on ILC2s, sorted ILC2s from the gut were treated with FK866 or FK866 plus succinate for CUT-Tag sequcecing.
Project description:To investigate the transcriptional regulation of Xbp1s in ILC2s, sorted large intestinal ILC2s from mice were used for CUT&Tag sequencing to analyze the target of Xbp1s.
Project description:To investigate the effect of NAD+ metabolism on ILC2s function, sorted ILC2s from the gut were treated with NAMPT inhibitor FK866 for bulk RNA sequcecing.
Project description:We analyzed the total proteome of group 2 innate lymphoid cells (ILC2s) after different stimulation with interleukin-33 (IL-33), a cytokine playing a critical role in human asthma, and TL1A, a TNF-family cytokine also known to activate ILC2s. Upon combined stimulation with IL-33 plus TL1A, we show that lung ILC2s produce high amounts of IL-9 and acquire a transient ‘ILC9’ phenotype. This phenotype is characterized by simultaneous production of large amounts of type 2 cytokines (IL-5, IL-13 and IL-9), induction of the IL-2 receptor CD25 (Il2ra), and of the transcription factors IRF4, JunB and BATF, that form immune-specific complexes known to induce IL-9 expression.
Project description:Group 2 innate lymphoid cells (ILC2s) in the lung are stimulated by inhaled allergens. ILC2s do not directly recognize allergens but they are stimulated by cytokines including interleukin (IL)-33 released by damaged epithelium.Lung ILC2s, upon stimulation, produce T helper 2 cell-type cytokines inducing T cell independent allergic lung inflammation. We now report that lung ILC2s, upon activation by an allergen or IL-33, acquire the properties of memory cells. The activated ILC2s initially proliferate and secrete cytokines, followed by a contraction phase as they stop producing cytokines. Nevertheless, some persist long after the resolution of the inflammation and acquire intrinsic capacities to react to unrelated allergens more vigorously than naïve ILC2s, thus mediating a severe allergic lung inflammation. Gene expression profiles of the previously activated ILC2s show a gene signature of memory T cells. These antigen non-specific memory ILC2s may explain why asthma patients are often sensitized to multiple allergens. ILC2s were isolated from mouse lungs from naive and IL-33 injected mice 4 days, 14 days and 4 months after the initial treatment. RNA was extracted from those ILC2 populations and analyzed for gene expression profiles. RNA was also extracted from ILC2s isolated from lung draining mediastinal lymph node (mLN) 4 days and 14 days after IL-33 treatment.
Project description:We developed scNanoSeq-CUT&Tag, a streamlined method by adapting a modified CUT&Tag protocol to Oxford Nanopore sequencing platform for efficient chromatin modification profiling at single-cell resolution. We firstly tested the performance of scNanoSeq-CUT&Tag on six human cell lines: K562, 293T, GM12878, HG002, H9, HFF1 and adult mouse blood cells, it showed that scNanoSeq-CUT&Tag can accurately distinguish different cell types in vitro and in vivo. Moreover, scNanoSeq-CUT&Tag enables to effectively map the allele-specific epigenomic modifications in the human genome andallows to analyze co-occupancy of histone modifications. Taking advantage of long-read sequencing,scNanoSeq-CUT&Tag can sensitively detect epigenomic state of repetitive elements. In addition, by applying scNanoSeq-CUT&Tag to testicular cells of adult mouse B6D2F1, we demonstrated that scNanoSeq-CUT&Tag maps dynamic epigenetic state changes during mouse spermatogenesis. Finally, we exploited the epigenetic changes of human leukemia cell line K562 during DNA demethylation, it showed that NanoSeq-CUT&Tag can capture H3K27ac signals changes along DNA demethylation. Overall, we prove that scNanoSeq-CUT&Tag is a valuable tool for efficiently probing chromatin state changes within individual cells.
Project description:This study aimed to adapt CUT&Tag to Plasmodium falciparum samples as an efficient and sensitive alternative to classical ChIP-sequencing. We compare H3K9me3 and HP1 CUT&Tag with ChIP-seq datasets, showing successful establishment of CUT&Tag in P. falciparum. Next we aimed to scale down required input material for our CUT&Tag reactions and generated high-quality HP1 tracks with as little as 10.000 nuclei. To minimise potential sample loss we tested feasibility of utilising (frozen) saponin parasite isolates as input material instead of nuclei, which proved to be viable. Lastly, we deployed our new technique Dimerisation-induced Biotinylation-CUT&Tag (DiBioCUT&Tag) to catch transient interactions by biotinylation of strongly associated proteins such as histones. We tested this technique on HP1 and compared standart CUT&Tag with DiBioCUT&Tag. Furthermore, we explored interactions of the transcription factor BDP5, which we were previously unable to succesfully ChIP.