Project description:Embryonic day (E)12.5 whole murine embryos, E11.5 - E14.5 whole murine embryos, E11.5 - E14.5, post-natal day (P)3 and P35 murine forelimbs, E14.5 brains, and COL1A2-mutant and COL1A2-WT forelimbs were fractionated and specific fractions were analyzed via LC-MS/MS. Aha-enrichment experiments consisted of in vivo protein labeling with azidohomoalanine (Aha) followed by tissue fractionation of the forelimbs and enrichment of labeled ECM proteins from the final IN pellet ('enriched'). 'Unenriched samples', or the background from which newly synthesized proteins were enriched from, were also analyzed via LC-MS/MS.
Project description:Purpose: This study seeks to identify SMARCC1-bound regions in the mouse limb. Methods: To identify SMARCC1 bound regions in the limb, we performed Cut&Run on pooled anterior and posterior wild-type forelimbs at E11.5 (43-44s; 3 replicates each) and on whole forelimb pairs at E9.5 (21-24s; 2 replicates). We identified 28,082 SMARCC1-bound regions in the anterior forelimb at E11.5, 42,530 regions in the E11.5 posterior limb, and 10,792 SMARCC1-bound regions at E9.5 (FDR<0.05). Results: We find that SMARCC1 is bound to most limb enhancer regions at late stages (E11.5). Additionally, We find that SMARCC1 is bound to the majority of HH-responsive GLI enhancers at E11.5 but only a small portion of GLI enhancers at E9.5.
Project description:The development of vertebrate extremities is a complex process which requires a highly coordinated network of different transcriptional activities. The homeodomain transcription factor Shox2 is a key player in limb formation controlling neural, muscular and skeletal development. Here, we compared gene expression profiles of wildtype and Shox2 knockout limbs using microarray experiments to identify Shox2 target genes. Forelimbs of E11.5 mouse embryos were dissected and genotyped for RNA extraction. RNA from 3-4 embryos of 2 different pregnancies was used for hybridisation to 2 arrays per genotype (wildtype and Shox2 knockout) and compared.
Project description:We have undertaken a screen of mouse limb tendon cells in order to identify molecular pathways involved in tendon development. Mouse limb tendon cells were isolated based on Scleraxis (Scx) expression at different stages of development: E11.5, E12.5 and E14.5 Microarray comparisons were carried out between tendon progenitor and differentiated stages. Forelimbs from E11.5, E12.5 and E14.5 Scx-GFP embryos were collected and dissociated with trypsin to obtain cell suspensions. Scx-positive tendon cells were isolated by FACS. RNA was extracted and Fragmented biotin-labelled cRNA samples were hybridized on Affymetrix Gene Chip Mouse Genome 430 2.0 arrays.
Project description:ATAC-seq on embryonic e11.5 mouse limb For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:Nanostring miRNA Array on embryonic 11.5 day (e11.5) mouse limb For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:Lmx1b regulates dorsalization of limb fates, but the mechanism of this regulation has not been characterized. To identify candidate genes regulated by Lmx1b we compared the limbs from Lmx1b KO mice to wild type mice during limb dorsalization (e11.5-13.5). Differentially expressed genes that we common to all three stages examined were considered to be likely candidates for Lmx1b regulation and further evaluated. At 11.5 and 12.5 dpc, embryos were harvested and the limb buds with the limb girdles were isolated. Embryos at 13.5dpc were also harvested and their distal limb buds (zeugopods and autopods) were isolated. Embryos were genotyped to confirm Lmx1b homozygosity (-/- or +/+). RNA from embryonic forelimbs and hindlimbs of wild type (WT) and Lmx1b KO mice was harvested using the Rneasy Kit (Qiagen). RNA was pooled to decrease genetic variability, i.e., six limbs at 11.5 dpc, three limbs at 12.5 dpc and six limbs at 13.5 dpc. Duplicate samples were generated using different embryos for each stage and then hybridized to the Affymetrix GeneChip® Mouse Genome 430 2.0 Array (UCI, Irvine, CA).
Project description:Sonic hedgehog (Shh) signals via Gli transcription factors to direct digit number and identity in the vertebrate limb. We have characterized the Gli-dependent cis-regulatory network through a combination of whole genome ChIP-on-chip and transcriptional profiling of the developing mouse limb. In this dataset, we include the expression data obtained from dissected mouse forelimbs using a variety of gain- and loss-of-function hedgehog pathway mutants, as well as limbs dissected into responsive (posterior 2/3ds) and non-responsive (anterior 1/3d) Hh tissues. These data are used to obtain 753 genes that are differentially expressed in response to Shh signaling. Keywords: Comparison of genetic samples
Project description:Sonic hedgehog (Shh) signals via Gli transcription factors to direct digit number and identity in the vertebrate limb. We have characterized the Gli-dependent cis-regulatory network through a combination of whole genome ChIP-on-chip and transcriptional profiling of the developing mouse limb. In this dataset, we include the expression data obtained from dissected mouse forelimbs using a variety of gain- and loss-of-function hedgehog pathway mutants, as well as limbs dissected into responsive (posterior 2/3ds) and non-responsive (anterior 1/3d) Hh tissues. These data are used to obtain 753 genes that are differentially expressed in response to Shh signaling.