Project description:This SuperSeries is composed of the following subset Series: GSE10630: Mfaveolata single-time point bleaching experiment GSE10632: Mfaveolata time course bleaching experiment Keywords: SuperSeries Refer to individual Series
Project description:Corals rely on a symbiosis with dinoflagellate algae (Symbiodinium spp.) to thrive in nutrient poor tropical oceans. However, the coral-algal symbiosis can break down during bleaching events, potentially leading to coral death. While genome-wide expression studies have shown the genes associated with the breakdown of this partnership, the full conglomerate of genes responsible for the establishment and maintenance of a healthy symbiosis remains unknown. Results from previous studies suggested little transcriptomic change associated with the establishment of symbiosis. In order to elucidate the transcriptomic response of the coral host in the presence of its associated symbiont, we utilized a comparative framework. Post-metamorphic aposymbiotic coral polyps of Orbicella faveolata were compared to symbiotic coral polyps 9 days after metamorphosis and the subsequent differential gene expression between control and treatment was quantified using cDNA microarray technology. Coral polyps exhibited differential expression of genes associated with nutrient metabolism and development, providing insight into pathways turned as a result of symbiosis driving early polyp growth. Furthermore, genes associated with lysosomal fusion were also upregulated, suggesting host regulation of symbiont densities soon after infection.
Project description:The extraction of tissue-skeleton cores from coral colonies is a common procedure to study diverse aspects of their biology, water quality or to obtain environmental proxies. Coral species preferred for such studies in Caribbean reefs belong to the genera Orbicella. The long term effects of coring in the coral colony are seldom evaluated and in many Caribbean countries this practice is not regulated. We monitored 50 lesions produced on Orbicella faveolata colonies by the extraction of two centimeter-diameter cores to determine if they were able to heal after a four year period. At the end of the study 4% of the lesions underwent full regeneration, 52% underwent partial regeneration, 14% suffered additional tissue loss but remained surrounded by live tissue, and 30% merged with dead areas of the colonies. Given the low capacity of Orbicella faveolata to regenerate tissue-skeleton lesions, studies that use coring should be regulated and mitigation actions, such as using less destructive techniques and remediation measures after extraction, should be conducted to facilitate tissue regeneration.
Project description:Outbreaks of coral diseases continue to reduce global coral populations. In the Caribbean, yellow band is a severe and wide-spread disease that commonly affects corals of the Orbicella spp. complex, significantly impeding coral reproduction, and hindering the natural recovery of Orbicella spp. POPULATIONS:Caribbean yellow-band disease (CYBD) lesions may be severe, and often result in the complete loss of coral tissue. The slow spread of CYBD, however, provides an opportunity to test methods to mitigate the disease. Here we report the results of in situ experiments, conducted within Buck Island Reef National Monument in St. Croix, USVI, to test the effectiveness of three techniques to minimize disease impact on Orbicella faveolata: (1) shading, (2) aspirating, and (3) chiseling a "firebreak" to isolate the lesion. Neither shading nor aspirating the diseased tissue significantly reduced CYBD tissue loss. However, chiseling reduced the rate and amount of tissue lost by 31%. While 30-40% of the chiseled lesions appeared to be free of disease signs 12-16 months after treatment, success significantly and steadily declined over 23 months, indicating a possible lack of long-term viability of the technique. The results of this study demonstrate that creating a "firebreak" between diseased and healthy-appearing tissue slows the spread of the disease and may prolong the life of O. faveolata colonies. The firebreak method yielded the best results of all the techniques tested, and also required the least amount of effort and resources. However, we do not recommend that this treatment alone be used for long-term disease mitigation. Rather, we propose that modifications of this and other treatment options be sought. The results also highlight the need for extended monitoring of CYBD after any treatment, due to the slow but variable rate and pattern of tissue loss in this disease.